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Prefacio

Este texto comenzé como apuntes personales del curso de Anélisis Real
impartido por el profesor Duvan Henao en la Pontificia Universidad Catélica
de Chile en primavera de 2021. Posteriormente, decidi completar lo que habia
escrito hasta cubrir, mds menos, todo el contenido que se ve usualmente en
nuestro curso de pregrado, apoyandome fuertemente en el maravilloso libro
de Elon Lages Lima, Espacos Métricos( [Lim14]).

Este curso es fundamental para cualquier estudiante de matemética. Mi
idea es que estas notas sirvan de introduccién al area, y como base sélida
para el estudio posterior de, por ejemplo, Andlisis Complejo, Ecuaciones
Diferenciales, Teoria de Integracién, Analisis Funcional, y Teoria Espectral.

Es pertinente comentar sobre la desicién de contenidos que he hecho. He
optado, generalmente, por un enfoque minimalista, pero sin escatimar en
recursos pedagdgicos. El motivo es que, al haber ya pasado por los cursos
mencionados anteriormente, he notado dos posibles sitios en los que opti-
mizar recursos. Por un lado existe solapamiento no-trivial entre lo visto en
cada curso, y por otro, se suelen estudiar teoria y resultados que no son
particularmente 1tiles sino solo cuando estdn en algin contexto particular.

Por ejemplo, podriamos discutir axiomas de separabilidad y contabilidad,
pero el caso de espacios métricos resulta no ser de interés particular. El in-
terés viene al querer estudiar espacios vectoriales topologicos no-metrizables,
que ocurren naturalmente en areas mas especializadas. Otro ejemplo es el
Teorema de Hanh—Banach, o el Teorema de Baire que si bien es muy impor-
tante, no tiene mayores aplicaciones hasta el estudio operadores lineales y
dualidad.

Asi, he decidido cubrir el contenido que es 1til para el resto de cursos,
pero he omitido el que se deberia estudiar con lujo de detalle en esos mismo
Cursos.

Estd de mas decir que debo haber cometido muchos errores, tanto en la
matemadtica como en la exposicién—de los cuales no me hago responsable.
Espero que a medida que sean encontrados me los puedan comunicar a mi
correo benjaquezadam@uc. cl| para corregirlos.


benjaquezadam@uc.cl




Introduccion

Este es un curso introductorio de Anadlisis Matemético. El germen del
Anélisis moderno se puede rastrear a la memoria de Maurice Fréchet de
1906, titulada Sur quelques points du Calcul Fonctionnel (en [Fré00]). En
ella, apunta a unificar el estudio de diversas clases de funciones (por ejemplo,
continuas, diferenciables, etc.) en una unica teorfa robusta, en la que las
funciones—no sus valores—sean los elementos de algiin conjunto con alguna
estructura adicional que permita hablar de los objetos usuales asociados a
un conjunto puntual (i.e, formado por ndmeros): puntos limites, adherencia,
clausura, interior, etc.

Fréchet reconoce el concepto de funcién moderno ([Fré06, p. 1]), y apun-
ta a unificar las teorfas de espacios no solo de funciones reales/complejas,
sino que también de funciones de sucesiones, o de funciones de otras funcio-
nes (como los operadores lineales en espacios vectoriales de funciones). Su
método es adoptar un punto de vista totalmente general que abarque todas
las familias de funciones mencionadas, y permita revelar sus propiedades en
comun.

En [Eré00, §§1.4-6], el autor presenta la observacién clave que, en un
conjunto cualquiera, se puede recuperar la teoria de conjuntos puntuales
siempre que dicho conjunto tenga una nocién razonable de limite. Fréchet
describe axioméaticamente el concepto de “conjuntos con limite” —que llama
sugerentemente de clase (L)—en [Fré06} §1.7], indicando que en un conjunto
FE formado por elementos de naturaleza cualquiera, la nocién de limite debe
satisfacer que:

1. Siempre podemos distinguir si una sucesién (infinita) tiene limite o no.

2. Sien una sucesién (A, )nen cada término es igual a un elemento A € E,
el limite de dicha sucesién ha de ser A.

3. Si una sucesién (A )nen converge a A € E, entonces cualqueir subsu-
cesién (An, )ken debe tener como limite a A.






Capitulo 1

Espacios métricos y su topologia

1.1. Definiciéon y ejemplos

Un espacio métrico es un conjunto equipado con una nocién de distancia
entre dos puntos. La definicién contemporanea es la que Fréchet dio origi-
nalmente en [Fré06l §49, p. 30]:

Definicién 1.1.1. Una métrica o distancia en un conjunto M es una funcién
d: M x M — Ry tal que para todos x,y,2 € M cumple:

1. Coincidencia: d(z,y) =0 < z =y.

2. Desigualdad triangular: d(z, z) < d(z,y) + d(y, ).

El ntimero d(z,y) se llama distancia entre x e y, y el par (M, d) se llama un
espacio métrico.

EJERCICIO. La literatura suele incluir la propiedad de simetria que d(z,y) = d(y,z) en
la lista de axiomas. Esto en realidad no es necesario: verifique de nuestra definicién de
distancia se deduce la simetria de d. También, hemos definido una distancia como no-
negativa, pero esto igual es redundante: verifique que si d: R — R satisface coincidencia
y desigualdad triangular, entonces toma valores no-negativos.

Ejemplo 1.1.2. El prototipo de espacio métrico es (R",d), donde

d(z,y) :=

la métrica euclidiana. Claramente es una funcién no-negativa, porque es raiz
cuadrada de un nimero no-negativo. La coincidencia viene del hecho de que
una suma de nimeros no-negativos puede ser 0 exclusivamente en el caso
que cada sumando sea 0. La desigualdad triangular es no-trivial, y se deduce
de la desigualdad de Cauchy—Schwarz, que deberia sonar familiar del curso
de Algebra Lineal.

Ejemplo 1.1.3. En cualquier conjunto M se puede definir la funcién

0 siz=wy,

d =
() 1 otro caso.
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Esta funcién define una métrica en M, lo que se puede verificar por fuerza
bruta. Esta métrica se llama métrica cero-uno o métrica discreta. Es til
para producir contraejemplos.

EJjERcICIO. Verifique que la métrica discreta es efectivamente una métrica.

Ejemplo 1.1.4. Sea (M, d) un espacio métrico. Cualquier subconjunto S C
M puede ser realizado como un espacio métrico considerando la restriccién
de d a S, en otras palabras, (S, d|sxs) es un espacio métrico: las tres condi-
ciones de la Definicién se cumplen para todos x,y,z € M, por lo que
en particular se cumplen para todos x,y,z € S. Este espacio se llama un
subespacio métrico de M, y d|sxs se llama la métrica subespacio inducida
por (M, d).

Ejemplo 1.1.5. Un R-espacio vectorial es un grupo abeliano (V,+) equi-
pado con una accién compatible del anillo R. Todo producto interior (-, -) en
V induce una norma ||-|| en V a través de

vl :== v/ (v, v),
la que a su vez induce una métrica en V a través de
d(v,w) = |jv —w||.

NoTA PEDAGOGICA. Dependiendo de la formacién previa de las estudiantes del curso, el
lenguaje usado en el ejemplo anterior puede ser nuevo, tanto por la precisién de los obje-
tos algeraicos como por las menciones de productos interiores y normas. Estos conceptos
se estudiardn con profundidad en el curso de Andlisis Funcional, pero de todos modos
es razonable definirlos ahora en la cdtedra para tener el lenguaje de espacios normados
a nuestra disposicién—particularmente porque las estudiantes de Matematica lo tienen
desde el curso de Algebra Lineal.

Los espacios de interés que vamos a querer analizar son los espacios eucli-
dianos de dimensién finita R"™, los espacios de sucesiones RY, y los espacios de
funciones acotadas B(X), donde X es (de momento) un conjunto cualquie-
ra. Hay dos formas estdndar de definir normas/métricas en estos espacios:
tomando algiin maximo, o tomando alguna p-suma. En los siguentes dos
ejemplos desarrolaremos estas ideas de forma concreta.

Ejemplo 1.1.6 (Normas-c0). En R”, se puede definir la funcién

@ mn)ll = méx o],

También, si del conjunto de todas las sucesiones (reales) RY consideramos
solo aquellas acotadas (coleccién que se denota £°°), se puede definir la fun-
cién

[[(z5)jenll o = sup|z;.
JEN

Dado X un conjunto cualquiera, al considerar coleccién de funciones X — R
acotadas, denotada B(X), se puede definir la funcién

[flloc := sup [f(x)
reX
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Estas tres funciones definen normas en sus espacios respectivos. Verifi-
quemos la desigualdad triangular para (B(X), |||, ). En efecto, para todas
fy9,h € B(X), se tiene que

|f(x) = g(@)] = [f(z) = h(z) + h(z) = g(2)|
< [f(2) = k()| + |h(z) — g(=)],

para todo x € X, donde usamos la desigualdad triangular para el valor
absoluto usual. Tomando supremos,

sup |/ (2) — g(@)] < sup /(&) — hz)| + sup [h(z) — g(a)],

zeX zeX rzeX
lo que podemos hacer gracias a la hipdtesis de que las funciones son acotadas.

Para tener una idea concreta, z": [0,1] — R es un miembro de B([0, 1])
pues es es continua de dominio cerrado y acotado, por lo que aplica el Teo-
rema del Valor Extremo que indica que es acotada. En particular,
[l = sup o] =1.
z€[0,1]

Observacién. De la desigualdad triangular de (B(X), ||-||.,) se deducen las
dos anteriores, al considerar los vectores en R" como funciones {1,...,n} —
R (cada una acotada porque alcanza finitos valores), y las elementos de £*°
como funciones N — R acotadas.

Ejemplo 1.1.7 (Normas-p). Otra familia de normas en los espacios del
Ejemplo son las normas-p, con p € [1,00). En R™, podemos considerar

la funcién
n 1/p
H(xlvuwxn)Hp = (Z |‘Tﬂp> )
j=1

y andlogamente en RY la funcién

1/p
ll(@5)ienll, : (Z |$a”> :

También en C([a, b]), podemos definir la funcién

i1, = ( [ b |f<x>|‘°dx)l/p'

Considerando los subconjuntos donde estas sumas e integral convergen, que
se escriben /P y LP respectivamente, obtenemos efectivamente normas. Es
claro que dichas funciones son no-negativas y satisfacen coincidencia. El des-
affo estd en probar la desigualdad triangular, que en el caso de |-, tiene un
nombre especial: la desigualdad de Minkowski. La demostracién es no-trivial
y sera omitida.

Un elemento concreto en £ es ey, := (ex)ren donde

ek::{Osﬁc;én

1sik=n

Es acotada por 1, y de hecho |le,||, =
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EJercicio. Con la notacién del ejemplo anterior, calcule la distancia entre ej y e; (para

i # k).

Ejemplo 1.1.8. En virtud del Ejemplo podemos considerar subespa-
cios lineales de espacios normados, que seguiran siendo espacios normados.
Por ejemplo, el conjunto C([a,b]) es subespacio de B([a, b]) gracias al Teore-
ma del Valor Extremo, y por tanto hereda su norma-supremo. Ejemplos de
subespacios de £°° son el espacio ¢ de las sucesiones convergentes, o co de las
sucesiones convergentes a 0

EJjERCICIO. Verifique que los afirmados subespacios de sus espacios respectivos, efectiva-
mente lo son. ;Cudl es la jerarquia de contenciones de los (sub)espacios de sucesiones?

A continuacién, estudiaremos algunos ejemplos algo mas exéticos.
Ejemplo 1.1.9. Numeros p-adicos.

Ejemplo 1.1.10. En R, la funcién
d(z,y) := [tanhz — tanhy|,

donde usamos la funcién tangente hiperbolica definida por

e’ —e”

er + e’
es una métrica. Es un ejemplo de una métrica que no viene de una norma, y

que de hecho es escencialmente distinta (idea que formalizaremos posterior-
mente) a la métrica usual.

xT
tanhz :=

Ejemplo 1.1.11. En RY, la funcién

o0
zj — yjl
d(z,y) = . |5
’ ;23(1+|xj—yj|)
define una métrica. Nuevamente, esta métrica no proviene de ninguna norma.

1.2. Sucesiones y limites

A continuacién, desarrollamos el programa descrito por Fréchet que he-
mos discutido. A saber, definiremos qué es una sucesién, sus limites, y pro-
baremos algunas propiedades elementales. Estudiar sucesiones en espacios
métricos es la generalizacién natural de estudiarlas en R", y, como es de
esperar, muchas de las definiciones y propiedades se traducen sin problemas
a espacios métricos.

Definicién 1.2.1. Una sucesion en un espacio métrico M es una lista nu-
merable (zp)nen := (z1,Z2,...) de elementos de M, es decir, una funcién
z: N — M. El n-ésimo término de esta sucesién se denota como z, := z(n).
Una subsucesidn de (zn)nen es una restriccién de z a un subconjunto in-
finito de N, vale decir, si {nk}keN C N, la subsucesién correspondiente es
(zny )wen. Decimos que una sucesién (2, )nen en M es acotada si la distancia
entre cualesquiera dos términos de dicha sucesion es acotada por algin r > 0
uniforme.
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EJERCICIO. Verifique que las sucesiones que toman una cantidad finita de valores son
todas acotadas.

La definicién e-6 de limite es la misma de calculo:

Definicién 1.2.2. Sea M un espacio métrico, y sea (z,)nen una sucesién
en M. Decimos que el limite de (zn)nen es igual a a si dado € > 0, podemos
encontrar un N € N tal que para todo n > N, se tenga que d(zn,a) < €. En
tal caso, denotamos limpen Zpn := a. También se dice que (zn)nen tiende a
a, o que (Tn)nen converge a a, y se escribe x, — a. Si el limite en cuestién
no existe, decimos que la sucesién diverge.

EjErcicio. Escriba explicitamente la negacién légica de la definicién de convergencia.
Pruebe que en cualquier espacio métrico con al menos dos elementos (con cualquier
métrica) siempre hay alguna sucesién divergente.

Para tener ideas concretas, iremos estudiando los conceptos que aparez-
can a través de tres ejemplos recurrentes, uno en cada espacio de interés.

Ejemplo 1.2.3. La sucesién (zn)nen en R dada por z, := 1/n para todo
n € N converge a 0: en efecto, dado € > 0, tomemos N > é (lo que se puede
hacer gracias a la Propiedad Arquimediana). De acd, se sigue que

1

1 1 1
n>N < —< = <= —<eg = |——-0|<e.
n N n n

EJERCICIO. Dé algin ejemplo de una sucesién divergente en R y una en R™, n > 1.

Proposicién 1.2.4. En todo espacio métrico M, las sucesiones constantes
convergen a dicha constante.

Demostracion. Sea (zn)nen una sucesién constante en M, es decir, tal que
T, = a € M para todo n € N. Esta sucesiéon converge a a: en efecto, dado
€ > 0, podemos tomar cualquier N € N, pues como z, = a siempre, en
particular cuando n > N se tendrd que d(zn,a) = d(a,a) =0 < e. O

Proposicién 1.2.5. Si una sucesion (Tn)nen en un espacio métrico M es
convergente, entonces es acotada.

Demostracion. Sea (zn)nen como en el enunciado. Supongamos que z, —
a € M. Para ¢ = 1, se tiene que existe N € N tal que si n > N, entonces
zn € B(a,1). Por lo tanto, los términos de la sucesién estdn contenidos en
el conjunto {z1,...,zn} U B(a,1). Como ambos conjuntos son acotados, se
sigue que su unién también es acotada. O

Observacidn. El contrarreciproco de[[:2.5] nos dice que si una sucesién no es
acotada, entonces es divergente. Por ejemplo, la sucesién (z,)nen dada por

T, := n para todo n € N no es acotada, y por tanto es divergente.

Lema 1.2.6. Si una sucesion (Tn)nen en un espacio métrico M es conver-
gente, entonces su limite es unico.

Demostracion. Sea (Zn)nen como en el enunciado. Supongamos que z, —
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a € M y que z, — b € M. Esto es, por definicién, que dado € > 0, podemos
encontrar N1, N2 € N tal que si n > Np entonces d(zn,a) <€,y sin > N»
entonces d(xn,b) < e. Consideremos N > méx { Ny, N2}. Por tanto, si n >
N, se sigue, por desigualdad triangular, que d(a, b) < d(a, Tn)+d(zn,b) < 2e.
Como ¢ era arbitrario, se tiene que d(a,b) = 0, y por tanto a = b. O

Lema 1.2.7. Si una sucesion (Tn)nen en un espacio métrico M es conver-
gente, entonces todas sus subsucesiones convergen al limite de (Tn)nen-

Demostracion. Sea (xn)nen como en el enunciado, y supongamos que =, —
a € M. Por definicién, esto es que dado € > 0, existe N € N tal quesin > N,
entonces d(zn,a) < €. Por otro lado, también existe K € N tal que nx > N,
pues n1 < n2 < ... Por tanto, se sigue que si kK > K, entonces nx > N,y
por tanto d(zn,,a) < €. Esto es, z,, — a. O

Observacion. El contrarreciproco de nos dice que si una sucesién tiene
al menos un par de subsucesiones que convergen a limites distintos, entonces
esta diverge. Por ejemplo, la sucesién (zn)nen en R dada por z, := (—=1)"
tiene las subsucesiones (z2i)ien (que es constantemente 1) y (z(2;—1))jen
(que es constantemente —1). Estas convergen a 1 y a —1 respectivamente, y
como 1 # —1, se sigue que (zn)nen es divergente.

Podemos dar una otra caracterizacién—muy 1til-—de funcién continua:
una funcién seréd métricamente continua (y por tanto topolégicamente con-
tinua) si y solo si es secuencialmente continua:

Proposicién 1.2.8. Sean M, N espacios métricos. Una funcion f: M — N
es continua en a € M si y solo si preserva limites secuenciales, es decir, que
st Tn — a, entonces f(xn) — f(a).

Demostracion. Probemos ambas implicancias:

= Si f es continua en a, dado € > 0, podemos encontrar § > 0 de modo
que si d(z,a) < J, entonces d(f(z), f(a)) < €. Sea N € N menor a ¢.
Por tanto, para todo n > N se tendrd que d(zn,a) < N < d, y por
tanto d(f(zn), f(a)) < €, es decir, efectivamente f(z,) = f(a).

<= Supongamos que f(x,) — f(a) para cualquier sucesién que converja
a a. Buscando una contradiccién, supongamos que f no es continua
en a. Por tanto, existe al menos un € > 0 de modo que para cualquier
distancia § > 0, en particular para cada d,, := %, existe x, € M tal que
d(zn,a) < *, pero d(f(zn), f(a)) > e. Es decir, hemos encontrado una
secuencia que converge a a, pero la sucesiéon de imagenes no converge
a f(a), lo que contradice nuestra hipétesis. O

También, hay una caracterizacién de clausura en términos de sucesiones:

Proposicién 1.2.9. Sean M un espacio métrico, a € M y X C M. Se tiene
que a € X sty solo si a es el limite de alguna sucesion en X.

Demostracion. Adoptemos la notacién del enunciado.

= : Si a € X, entonces para cualquier distancia r > 0, se tiene que B(a,r)
tiene puntos de X. Por tanto, para cada n € N, consideremos algin
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Ty € B(a, £). La sucesion (#,)nen es formada tnicamente por elemen-
tos de X, y por construccién converge a a.

<=: Si z, — a es una sucesién en X, por convergencia se tiene que toda
bola abierta centrada en a contiene puntos de la sucesién, es decir, que
a€ X.

O

Ejemplo 1.2.10.

1. Notemos que 0X = X N M — X, por lo que los puntos en la frontera
de X son precisamente los puntos que son limites de sucesiones en X
y M — X al mismo tiempo.

2. Un subconjunto X C M es denso en M si y solo si X = M, es decir,
si M es el conjunto de todos los limites de sucesiones en X.

3. Un conjunto F es cerrado en M si y solo si F' = F, es decir, que el
mismo F' es el conjunto de todos los limites de sucesiones en F'.

1.3. Vecindades métricas

Dado un conjunto X, una topologia en X es una colecciéon de subconjun-
tos 7 de X que contenga a @), X, que sea cerrada bajo uniones arbitrarias, y
bajo intersecciones finitas. Cada elemento de 7 se llama un conjunto abierto,
y el par (X, 7) se llama un espacio topoldgico.

En esta seccion vamos a abstraer los conceptos fundamentales de R a
espacios métricos. Debemos partir definiendo una topologia, es decir, declarar
qué es un abierto en un espacio métrico. Para esto, vamos a apoyarnos en un
tipo de conjunto mas sencillo: las bolas. Estas nos van a permitir identificar
cuiando un punto estd “dentro” topolégicamente de un conjunto. Un abierto
serd un conjunto que solo tiene “interior”.

Definicién 1.3.1. Sea M un espacio métrico y a € M. Dado r > 0, de-
finimos la bola abierta de centro a y radio r como el conjunto de pun-
tos de M que estdn a una distancia menor que r de a, léase, B(a,r) :=
{z e M: d(z,a) < r}.

Ejemplo 1.3.2.

1. Sea M un espacio métrico con la métrica cero-uno. Por definicién, en
este espacio cualquier par de puntos estdn a distancia menor o igual a
1, por lo que para todo a € M se tiene que

M sir>1,
Bla,r) = {{a} sir <1

2. En R con la métrica usual se tiene que
B(a,r)={z €R: |z —a| <7}
={zeR: —r<z—a<r}
={z€eRia—r<z<a+r}
=(a—ra+r).
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Definicién 1.3.3. Sea M un espacio métrico, y X C M. Decimos que un
a € X es un punto interior de X si es centro de una bola abierta en X, es
decir, si existe r > 0 tal que B(a,r) C X. El conjunto de todos los puntos
interiores a X en M se llama interior de X en M, y se denota como int X.
Decimos que A C M es un conjunto abierto en M si todos sus puntos son
interiores, es decir, si A = int A.

Ejemplo 1.3.4.

1. Recordemos que cualquier intervalo abierto centrado en un ntimero
racional contiene nimeros irracionales. Por tanto, el interior de Q en
R es vacio. Es decir, Q no es un abierto de R.

2. Sea M un espacio métrico. Toda bola abierta en M es un conjunto
abierto: sea B(a,r) una bola abierta centrada en a € M de radio
r > 0.

Debemos probar que para cada = € B(a,r), podemos encontrar un
radio s > 0 de modo que B(z,s) C B(a,r).
Consideremos s := r — d(a,z) > 0. Por definicién, si y € B(z,s),
entonces d(z,y) < s. Por tanto, por desigualdad triangular, notamos
que

d(a,y) < d(a,z) + d(z,y) <d(a,x) +s=r,

es decir, y € B(a,r), por lo que B(z,s) C B(a,r).

3. Sea M un espacio métrico. El mismo M es abierto en M, pues todas
las bolas centradas en a € M estan contenidas en M. También @ C M
es abierto en M por vacuidad.

4. Sea M un espacio métrico, y F := {a1...,an} € M un subconjunto
finito de M. Se tiene que M — F' es abierto en M: en efecto, para cada
r € M — F podemos considerar

ra= lir{u'n {d(x,a;)}.

Se sigue que B(z,r) es una bola abierta que por construccién no con-
tiene a ninguno de los a;, es decir, que B(z,r) C M — F. Esto es
precisamente que M — F es abierto en M.

5. Todo intervalo real abierto acotado (a,b) es abierto en R pues es la

bola abierta de centro I"*'Ta y radio b_T“,

Como mencionamos antes, los abiertos métricos son una topologia:

Proposicién 1.3.5. Sea M espacio métrico. La coleccion T := {A C M abierto}
define una topologia en M, es decir, se tiene que:

1. M,per.
2. Si Ar,...,An €7, entonces (), A; € T.

3. Sea L es un conjunto de indices. Entonces si Ax € T para todo \ € L,
entonces U/\GL Ay €ET.

Demostracion. Probemos que se satisfacen los axiomas de topologia.
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1. Esto fue probado en el Ejemplo ).

2. Sean Ai,..., A, € T,y sea a € ();_, As, es decir a € A; para cada
i =1,...,n. Como cada uno de estos conjuntos es abierto, existe r; > 0
tal que B(a,r;) C A;. Consideremos

r:= min {r}.
i=1,...,n

Por tanto, se tiene que B(a,r) C B(a,r;) C A; paracadai=1,...,n.
Esto es precisamente que B(a,r) C (), A:, es decir, (), A; es efec-
tivamente abierto en M.

3. Sean L y cada Ay como en el enunciado. Sea a € |, Ax. Se sigue que
existe algin A € L tal que A es abierto en M, es decir, que existe un
rx > 0 de modo que B(a,rx) C Ax C Jye Ax- Por tanto, el conjunto
en cuestién es efectivamente abierto en M. O

Observacion. Una intersecciéon arbitraria de conjuntos abiertos no es nece-
sariamente un conjunto abierto: un singleton {a} C M puede ser abierto en
M solo en el caso que sea aislado, en el sentido que sea una bola métrica.
Este es el caso, por ejemplo, de métrica cero-uno, en la que todo punto es
aislado.

Podemos caracterizar a los abiertos métricos como aquellos conjuntos
que son uniones de bolas abiertas. En lenguaje topoldgico, esto dice que las
bolas abiertas son una base de la topologia:

Proposicién 1.3.6. Sea M un espacio métrico. Un subconjunto A C M es
abierto en M si y solo si A es una union de bolas abiertas.

Demostracion. Sea M un espacio métrico. Probemos ambas implicancias.

<—: Si A C M es una unién de bolas abiertas en M, entonces A es unién
de abiertos en M, y por tanto un conjunto abierto de M.

—: Sea A C M abierto en M, por lo que para cada x € A, podemos encon-
trar r, > 0 tal que B(z,r) C A. Asi, se tiene que {z} C B(z,r;) C A.
Tomando unién sobre cada = € A, se tiene que

A= U {z} C U B(z,rs) C A,

T€A z€A

y por tanto A = J_ ., B(z,72), lo que prueba lo enunciado. O

Observacion. En lenguaje de bolas, la definicién de covergencia es equiva-
lente a que para todo radio € > 0, existe un N € N tal que =, € B(a,¢) para
todo n > N. La definicién de divergencia en lenguaje de bolas es que existe
algin radio € > 0 tal que para todo N € N, podemos encontrar n > N de
modo que z, ¢ B(a,¢).

1.4. Isometrias

Las funciones entre espacios métricos que preservan distancia reciben
atencién especial:
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Definicién 1.4.1. Sean (M,d) y (N, p) espacios métricos. Diremos que una
funcién f: M — N es una inmersion isométrica o que preserva distancias
si la distancia entre dos puntos es la misma que entre sus imagenes bajo f,
es decir, si d(z,y) = p(f(z), f(y)) para todos z,y € M.

Se puede demostrar facilmente que las inmersiones isométricas son siem-
pre inyectivas:

Proposicion 1.4.2. Toda inmersion isométrica entre espacios étricos f: M —
N es inyectiva.

Demostracion. Esto es una cuenta directa: dados x,y € M, se tiene que

f(x) = fly) = d(f(x), f(y)) = d(z,y) =0
= r=y. O

Por tanto, una inmersién isométrica sobreyectiva es autométicamente
biyectiva, y por ende invertible. Estas reciben otro nombre:

Definicién 1.4.3. Una isometria entre dos espacios métricos M, N es una
inmersién isométrica invertible f: M — N.

De estar bien definidas, la composiciéon de inmersiones, y la inversa de
una inmersién, son inmersiones:

Proposicién 1.4.4. Sean (M,d), (N, p), (O,0) espacios métricos. Dadas
isometrias f: M — N y g: N — O, entonces go f y f~ ' también son
isometrias.

Demostracion. Veamos la composicién. En primer lugar, g o f es inmersién
isométrica pues dados x,y € M, se tiene que

(f(x), f(y))
(g(f(x)),9(f ()
a([go fl(x), [go f1(y))-

La inversa de go f es claramente f~!og™!. Esto verifica que la composicién
de isometrias es isometria.

Probar que f~! es una isometria N — M es directo. En efecto, si z,y €
N, se tiene que

d(z,y) =p
o

p(idn (z),idn (y))
= p(f(f7 @), F(F1()))
d

lo que verifica que f ' es inmersién isométrica. Su inversa es f, por hipétesis.

Hay veces que vamos a querer estudiar un conjunto X de interés, pero
puede no tener una métrica equipada. El nombre de inmersion viene de que
si tenemos una funcién inyectiva a un espacio métrico f: X — M, vamos a
poder inmergir X en M de forma canénica:
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Proposicién 1.4.5. Sea X un conjunto, y (M, d) un espacio métrico. Dada
una funcion inyectiva f: X — M, se tiene que la funcion

d'(w,y) = d(f(2), [ (v))

define una métrica en X, que hace de f una inmersién isométrica.

Demostracion. Es claro que d’ satisface la no-negatividad, simetria, y des-
igualdad de triangular, pues es heredada de d. La tunica parte no trivial es
la coincidencia. Dados z,y € X, se tiene que

d'(z,y) < d(f(x),f(y)) =0
= f(z)=f(y)
= z=y,

donde la dltima equivalencia usa la inyectividad de f. El que f sea inmersién
isométrica es por construccién. O

Ejemplo 1.4.6. Podemos inmergir isométricamente R en R™ (con cualquier
norma) del siguiente modo: sean a,u € R", con u unitario (ie., [jul| = 1), y
consideremos la funcién

f:R— R"
t — a + tu.

Esta es una inmersién isométrica, pues

d(f(s), f(£)) = |lf(s) = F@D)l
= |la + su —a — tul|
= [[(s = t)ull
= s =l
=d(s,t).
Ejemplo 1.4.7. Intuitivamente, R" debe ser isométrico consigo mismo. Es-
to puede probarse de distintas formas. Por ejemplo, dado a € R", la funcién

de traslacion por a definida por g.(x) := x + a es una isometria: dados
z,y € R" se tiene que

d(ga(2),9a(y)) = lz +a -y —all

= llz—yll

=d(z,y),
y su inversa es claramente la funcién y — y — a. Por otro lado, la funcién de
reflexion dada por h(z) := —x es otra isometria: dados z,y € R", se tiene

que

d(h(z), h(y)) = d(~=, —y)
= |-z +yl|
=d(y, z)
= d(z,y)
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1.5. Funciones continuas

Las funciones continuas de Calculo son aquellas que envian vecindades de
un punto, a vecindades de la imagen del punto. La definicién para espacios
métricos es la misma, intercambiando el valor absoluto por la distancia:

Definicién 1.5.1. Sean (M, d) y (N, p) espacios métricos. Decimos que una
funcién f: M — N es continua en el punto a € M si dado € > 0, existe
un 6 > 0 tal que cada vez que d(z,a) < ¢, se tenga que p(f(z), f(a)) < e.
Decimos que f continua si lo es en todos los puntos de M.

Observacion. En lenguaje de bolas, f: M — N es continua en a € M siy
solo si dada cualquier bola By := B(f(a),¢), existe una bola By := (a, )
de modo que f(Bwn) C By.

Lema 1.5.2. La composicién de funciones continuas es continua.

Demostracién. Sean (M, d), (N, p), (O, o) espacios métricos, y sean f: M —
N yg: N — P continuas. Dados €,£ > 0, la continuidad de g indica que hay
un 2 > 0 tal que si p(z, w) < J2, entonces o(g(z), g(w)) < e. Por otro lado, la
continuidad de f nos permite encontrar ; > 0 de modo que si d(z,a) < 1,
entonces p(f(z), f(a)) < & En particular, si € := d2, va a existir § > 0 tal
que si d(z,a) < §, entonces p(f(z), f(a)) < d2, y en este caso se tendrd que

a((go f)(x), (go f)la)) <e. O

Podemos dar una caracterizacién topolégica (ie., que no dependa de la
métrica) de continuidad: una funcién serd métricamente continua (nuestra
definicién) si y solo si es topoldgicamente continua (ie., tal que el conjunto
preimagen de un conjunto abierto, sea abierto):

Proposicién 1.5.3. Sean M, N espacios métricos. Una funcion f: M — N
es continua si y solo si la preimagen f~1(A) C M de cualquier abierto A C N
de N, es un abierto de M.

Demostracion. Sean M, N espacios métricos. Probemos ambas implicancias.

= : Supongamos que f: M — N es una funcién continua. Sea A C N un
abierto de N. Por definicién, que a € f~'(a) nos dice que f(a) € A.
Como A es un conjunto abierto, existe un radio € > 0 tal que que
B(f(a),e) € A.
Como f es continua, dado este radio € > 0, podemos encontrar § > 0
de modo que se tenga f(B(a,d)) C B(f(a),e). Por transitividad de
la inclusién, tenemos que f(B(a,d)) C A, y por tanto que B(a,d) C
A,
Esto es precisamente que a es un punto interior de f~'(A). Como a
era arbitrario, se tiene que f~'(A) es efectivamente abierto en M.

<= : Supongamos que dado cualquier abierto A C N de N, su preimagen
F71(A) C M es un abierto de M. Probemos que f es continua en cada
a € M. Notamos que dado a € M, una bola B(f(a),e) de cualquier
radio € > 0 es un abierto de N. Por tanto, nuestra hipdtesis nos dice
que f~Y(B(f(a),e)) es un abierto de M. Por definicién, a es un pun-
to interior de f~'(B(f(a),¢)), por lo que existe § > 0 de modo que
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B(a,8) C fX(B(f(a),2)), y por tanto f(B(a,d8)) C B(f(a),e). Esto
es precisamente que f es continua en a. O

Observacidn. La imagen f(A) de un abierto de M bajo una funcién continua
f: M — N no es necesariamente un abierto de N: por ejemplo, la funcién
x — x° es continua de R — R. El conjunto A := (—2,2) es un abierto de R,
pero f(A) =[0,4), que no es un conjunto abierto de R.

Ejemplo 1.5.4.

1. Sean M, ..., M, espacios métricos, y sean Ai,..., A, de modo que
cada A; es un subconjunto abierto de M;. Se tiene que el conjunto
H?:l A; es un abierto de M = H?:l M. En efecto, notamos que cada
proyeccion

n
it H Mj — Mi
j=1
es continua. Como A; es un abierto de M;, se tiene que 71'71(A¢) es un

. n _ n —1 . . .
abierto de M. Como.l—[i:1 A = m¢;1 w1 (A;), se tiene lo enunciado,
pues es una interseccién finita de abiertos.

2. Sea M un espacio métrico y sean fi,..., fn € C(M,R). El conjunto
A:={zeM: fi(z) >0paracadai=1,...,n}

es abierto en M. Para probar esto, usamos el ejemplo anterior: notamos
que la funcién f: M — R™; z — (fi(z),..., fn(x)) es continua, y que
el conjunto []7_, (0, 00) es abierto en R™, pues es producto de abiertos.
Se sigue que el conjunto A = f~'([]"_,(0,00)) es un abierto de M.

3. Sean M, N espacios métricos, y sean f,g: M — N funciones continuas.
Se tiene que el conjunto

A:={reM: f(z) # g(x)}

es abierto en M: sea F(z) := d(f(z), g(z)). Como esta funcién es con-
tinua M — R, se sigue que

{reM: F(z) >0} ={x € M:d(f(z),g(z)) # 0}
={zeM: f(z) #g(x)}
= A

Por el punto anterior, se concluye que A es abierto en M.

4. Podemos probar de otra forma que una bola abierta es un conjunto
abierto. Sea M un espacio métrico, y B(a,r) una bola abierta de M
para algunos a € M, r > 0. Consideremos la funcién M — R definida
por x — r — d(a,x). Esta es continua, y es claro que

{zeM: f(z) >0} ={z e M:d(a,z) <r}
= B(a,r),

por lo que el punto (2) nos asegura que B(a,r) es un abierto de M.
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La definicién de discontinuidad es simplemente la negacién légica de la
definicién de continuidad:

Definicién 1.5.5. Sean (M,d) y (N, p) espacios métricos. Decimos que una
funcién f: M — N es discontinua en a € M si no es continua en a, vale
decir, si existe un € > 0 tal que para todo 6 > 0 podemos encontrar un
x5 € M tal que d(zs5,a) < 0 pero p(f(zs), f(a)) > ¢.

Ejemplo 1.5.6. Consideremos la funcién caracteristica de Q, dada por

1@: R— R
1 sizeqQ,
—
v L)ﬁx%@
Esta funcién es discontinua en todo a € R: sea ¢ := 1/2y § > 0. Si a es

racional, consideramos zs irracional tal que |zs — a| < §, y si a es irracional
consideramos x5 racional tal que |zs — a| < §. En ambos casos se tiene que
[lo(zs) — 1lg(a)| =1 > 1/2, por lo que 1g es en efecto discontinua en a.

Ejemplo 1.5.7. Consideremos la funcién
ffR— R

sen (%) six #0,
xké{o siz=0.

Esta funcién es discontinua en 0: sea ¢ := 1/2 y para cada n € N considere-

2 :
MOS Tn = Griqy.- Se sigue que

sin(1/z,) = sin (g + 7m)
==+£1.

Por tanto, se tiene que |z, — 0] < 1/n (esto es directo), pero también que

£ () — £(0)] = |sin (xi) _ 0‘
12

=E&.

Por tanto, f es efectivamente discontinua.

Definicién 1.5.8. Sea M un espacio métrico. Decimos que un F' C M es
cerrado en M si su complemento M — F es abierto en M.

Observacion. Si bien “abierto”y “cerrado” son anténimos en castellano, en
este contexto un conjunto abierto no es lo contrario de un conjunto cerrado:
por ejemplo Q no es abierto ni cerrado en R, y en cualquier espacio métrico
M, se tiene que (), M son abiertos y cerrados en al mismo tiempo.
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Ejemplo 1.5.9.
1. Sea M un espacio métrico. Cualquier bola cerrada
Bla,r]:={x € M: d(z,a) <r} (1.5.9.1)

es cerrada, pues dado y € A := M — Bla, r], se tiene que s := d(y, a) >
r. Asi, podemos considerar B(y, s — r), que serd un abierto completa-
mente contenido en A.

2. Sea M un espacio métrico. Cualquier singleton {z} C M es cerrado en
M, pues dado a € A := M — {z}, podemos considerar s < d(a,z), y la
bola B(z, s) estard completamente contenida en A.

Prestemos atencién a la ecuacién [L5.9.1 la tinica diferencia con las bolas
abiertas es que ahora admitimos puntos que estén en el “borde” de las bolas,
y el resultado fue un conjunto cerrado. La definicién para cualquier conjunto
(no necesariamente bolas abiertas) es la siguiente:

Definicién 1.5.10. Sea M un espacio métrico, y X C M. Decimos que
x € M es un punto frontera de X si cualquier vecindad U, de z contiene
puntos tanto como de X como de su complemento M — X, es decir, si

U:NX 40, y Usn(M—X)#0.

El conjunto de todos los puntos frontera de X se llama la frontera de X, y
se denota 0X.

Observacion. Los puntos frontera de un conjunto pertenecen al espacio métri-
co ambiente, pero no necesariamente a dicho conjunto.

Ejemplo 1.5.11. Sea M un espacio métrico. La esfera de centro a € M y
radio r > 0, definida S(a,r) := {x € M: d(a,x) =r} es la frontera de las
bolas B(a,r) y Bla,r].

El resultado esperado es que para conseguir un cerrado a partir de cual-
quier conjunto, basta anadirle su frontera:

Proposicién 1.5.12. Sea M un espacio métrico. Dado X C M, se tiene
que el conjunto X := X UOX es cerrado.

Demostracion. Sea T la topologia generada por las bolas de M. Directa-
mente,

M-X={zeM:2g XN, €u[U.NX =0VU, N (M- X)=0]}.
En cualquier caso, la vecindad U, es un abierto contenido en M — X. O

Asi, hemos construido un conjunto cerrado a partir de X:

Definicién 1.5.13. Sea M un espacio métrico. Dado X C M, el conjunto
X = X U 09X se llama la cerradura (o clausura) de X.

Esta definicién de clausura es algo laboriosa de usar. Podemos dar una
caracterizacién de la clausura de un conjunto como aquellos puntos que estan
arbitrariamente cerca de dicho conjunto:
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Proposicién 1.5.14. Sea M un espacio métrico y X C M. Se tiene que
a € X siy solo si para todo € > 0 podemos encontrar algin x € X de modo
que d(a,z) < €.

Demostracion. Veamos ambas implicancias.

—>: Sia € X, el resultado es claro. Por otro lado, si a € X, sabemos que
dado £ > 0, se tiene que A := B(a,e) N X # 0. Asi, cualquier z € A
satisface lo requerido.

<= Sea a € M tal que para todo € > 0 podamos encontrar x € X tal que
d(a,z) < e. Claramente siempre se tiene que ¢ € A := B(a,e) N X,
por lo que A # 0. De acd hay dos posibilidades: B(a,¢) intersecta a
M — X, o no. En el primer caso se tiene que a € X, y en el segundo
que a € 9X. Es decir, a € X. O

Podemos dar una caracterizacién de conjunto cerrado a través de la clau-
sura:

Lema 1.5.15. Sea M un espacio métrico. Un F' C M es cerrado en M si
y solo si es su misma clausura, es decir, que F' = F'.

Demostracion. Que F' sea su misma clausura nos dice que contiene a todos
sus puntos adherentes, por lo que todo punto fuera de F' no serd adherente
a F'. Por tanto, la iltima observacién nos indica que todo punto en M — F
pertenece a int(M — F), es decir, que M — F C int(M — F).

Esto, més el hecho que int(M — F) C M — F, nos permite concluir que
M — F =int(M — F), esto es, que M — F es abierto, y por tanto que F es
cerrado. O

Los siguientes lemas verifican que estudiar topologia desde el punto de
vista de los abiertos es equivalente a estudiarla desde los cerrados:

Lema 1.5.16. Sea M un espacio métrico. La T coleccion de todos los con-
juntos cerrados de M es una topologia en M.

1. M,per.

2. Si F1,...,F, €1, entonces | J,_, Fi € T.

8. Sea L es un conjunto de indices. Entonces si F\ € T para todo \ € L,

entonces (e Fa € 7.

Demostracion. Basta tomar complementos adecuadamente en la proposicién
y usar las leyes de De Morgan. O

Observacion. Una unién arbitraria de cerrados no es necesariamente un con-
junto cerrado: sea M un espacio métrico y X C M un abierto de M. Se tiene
que X = J,cx {2}, pero cada {z} es cerrado en M.

Lema 1.5.17. Sean M, N espacios métricos. Una funcion f: M — N es
continua si y solo si la preimagen fﬁl(F) C M de cualquier cerrado FF C N
de N, es un cerrado de M.

Demostracion. Basta tomar complementos adecuadamente en la proposicién
1.5.3] usando las leyes de De Morgan.
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1.6. Espacios métricos compactos

La nocién de compacidad es central en el andlisis. Su concepcién no es
una historia clara, sino que fue el fruto de una serie de abstracciones de
propiedades de intervalos de la recta real. Empezaremos dando cuenta breve
de la exposién histérica detallada que se puede encontrar en [Ram14].

Para la década del 1900 ya se conocian resultados importantes sobre
los intervalos de R, que actualmente son cldsicos y son estudiados en los
cursos de Célculo Real. Por ejemplo, Bernard Bolzano, en su trabajo mas
famoso, Rein analytischer Beweis [Boll7|, probd que toda sucesién acotada
(e infinita) en R posee alguna subsucesién convergente (hecho llamado la
Propiedad de BolzanoEb, como un lema para probar el Teorema del Valor
Intermedio. También, en su Functionenlehre [Bol30, I, §§20721EI, demostré
el Teorema del Valor Extremo, que indica que toda funcién continua en un
intervalo cerrado alcanza sus valores minimo y maximo en dicho intervalo.

Estas propiedades son deseables, y el interés por generalizarlas a otros
espacios vectoriales normados—incluso a espacios vectoriales topolégicos—es
natural. En este contexto més general hay sucesiones de funciones definidas
en un mismo intervalo cerrado que no convergen. Fueron Giulio Ascoli y
Cesare Arzela quienes dieron condiciones suficientes y necesarias para que
una sucesion de funciones posea el andlogo respectivo de la propiedad de
Bolzano [Asc84l [Arz95| [Arz&3].

Fréchet fue el que extrajo por primera vez la escencia de la propiedad de
Bolzano, y propuso formalmente una primera nocién de compacidad en su
tesis [Fré06]: un espacio es compacto si toda sucesién en dicho espacio posee
alguna subsucesién convergente dentro del espacio. Esta definicién de com-
pacidad es buena para espacios métricos, pero no para espacios topoldgicos
maés generales.

En paralelo, se estaba desarrollando otra corriente que si resultaria en
una definicién més general. Emile Borel, estudiando continuaciones analiti-
cas, prob6 el hecho que todo cubrimiento numerable por abiertos de un inter-
valo cerrado, posee un subcubrimiento finito [Bor95)]. Casi al mismo tiempo,
Pierre Cousin, en un articulo sobre funciones de varias variables complejas
[Cou95], demostré el andlogo para cerrados acotados de R?, pero generali-
zando a cubrimientos arbitrarios. Posteriormente, Arthur Schoenflies verificé
que la demostracion de Borel se adaptaba directamente para cubrimientos
arbitrarios [Sch00], y atribuy¢ el resultado de Borel como una generalizacién
de un teorema de Eduard Heine, lo que llegé a generar controversig®} Henri
Lebesgue ofrecié otra demostracién, muy popular en la literatura, de este
resultado en su tratado sobre integracién [Leb04]. Referiremos a este hecho
como la Propiedad de Borel.

Fue la escuela rusa de Pavel Alexandrov y Pavel Urysohn, al desarrollar
la topologia punto-conjunto, quienes notaron que la propiedad de Borel—
topoldgica en naturaleza—implica la propiedad de Bolzano, y propusieron
una nocién més general de compacidad [AU29]. Esta idea se ha vuelto la

1La literatura refiere a esto como propiedad de Bolzano—WeierstraB, pues este tiltimo
los redescubrié y recontextualizd.

2Este articulo fue escrito en 1830, pero publicado recién en 1930, segin [RKLO05L p.
304].

3Hasta el dia de hoy este teorema suele llevar el nombre de Heine-Borel, pero Heine
nunca demostré ni enuncié este resultado o algiin andlogo [Ramild, p. 7]. Para més
detalles, ver [AEP13| o [Dug89].
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dominante en la literatura, y es la que seguiremos.

Definicién 1.6.1. Sea M un espacio mético y X C M. Decimos que una
coleccién de abiertos de M cubre a X si esta contenido en la unién de dicha
coleccién, y en tal caso con referemos a esta como un cubrimiento de X.
Decimos que X es (topoldgicamente) compacto si todo cubrimiento de X
admite un subcubrimiento formado por finitos abiertos.

Ejemplo 1.6.2.

1. El teorema de Borel indica que todo subconjunto cerrado y acotado de
R es compacto. Esta idea se puede generalizar a R™.

2. Todo espacio métrico M finito es compacto, pues para cubrir por abier-
tos todo M solo se necesitan finitos abiertos, de lo que es claro que todo
cubrimiento por abiertos de M admite un subcubrimiento finito.

3. En R, un intervalo abierto (a, b) no es compacto: notemos que existe un
N € N de modo que A, := (a+<,b— 1) C (a,b) para todon > N. Es
claro que | J,, Anen = (a,b) es un cubrimiento por abiertos de (a, b). Sin
embargo, no admite subcubrimientos finitos, pues la unién de finitos
Ajp es igual al més grande de estos.

4. En todo espacio métrico M, la unién de subconjuntos compactos es
compacta: sean K,L C M compactos, y consideremos C un cubri-
miento por abiertos de K U L. En particular C es un cubrimiento por
abiertos de K y de L, por lo que, al ser compactos, podemos extraer
subcubrimientos finitos C1,Cz respectivamente, de lo que notamos que
C1 UCz es un subcubrimiento finito de K U L. Inductivamente, la unién
numerable de subconjuntos compactos es compacta.

5. Una unién arbitraria de compactos puede no ser compacta: por ejem-
plo, R := {J, cr {2} El ejemplo (2) muestra que cada {x} es compacto,
pero R no es compacto.

Tomando complementos, podemos caracterizar la compacidad de un con-
junto por conjuntos cerrados:

Proposicién 1.6.3. Un espacio métrico M es compacto si y solo si toda
familia de cerrados de M cuya interseccion es vacia posee una subfamilia
finita cuya interseccion es vacia.

Demostracion. M es compacto si y solo si todo cubrimiento por abiertos
(Ax)aer de M admite un subcubrimiento finito. Simbdlicamente, si M =
User Ax, entonces existe existen finitos A1, ..., A, de modo que M = (J;_; Ax,.
Tomando complementos y utilizando las leyes de De Morgan, esto es equi-
valente a que si ) = (N, o, (M — A,), entonces f = ;_, (M — Ay;). Como
esto es cierto para abiertos arbitrarios, y los cerrados son precisamente los
complementos de los abiertos, esto es cierto para todo cerrado. O

Nos referimos a este hecho como la Propiedad de Intersecciones Fintas.
Estudiaremos algunas propiedades de la compacidad. En particular, vere-
mos cémo se relaciona con la topologia métrica, y con las otras nociones de
compacidad que describimos anteriormente.
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Proposiciéon 1.6.4. Sea K un espacio métrico compacto. Un subespacio
S C K es cerrado si y solo si es compacto.

Demostracion. Adoptemos la notacion del enunciado y probemos ambas im-
plicancias.

= : Sea S un cerrado de K. Consideremos un cubrimiento por abiertos
de S arbitrario, U>\E . Ax. Con esto, construimos el cubrimiento por
abiertos de K que consiste de (J,., Ax U (K — §), del cual extraemos
el subcubrimiento finito

C::A)\IU...UA)\HU(K—S).

Es claro S C C, pero como (K — S) no tiene puntos de S, debe ser que
S C Ax, U...UA,,, de lo que hemos encontrado un subcubrimiento
finito del original, lo que prueba la compacidad de S.

<= Sea S compacto en K, y supongamos que no es cerrado en K, es decir,
que S es distinto a su clausura, y por tanto existe x € (S —S) = 95S.
Para llegar a una contradiccién, habria que encontrar un cubrimiento
por abiertos de S que no admitiera una subcubrimiento finito. Para
cadan € N, sea
Ay = (M - Bla, 1)),

los cuales son claramente abiertos, pues son los complementos de las
bolas cerradas, que son conjuntos cerrados. Mdas atn, UneN A, es un

cubrimiento (abierto) de S: basta notar que como [, Bz, 1= {a},
entonces se tiene que

(M - ﬂngN B[xa %])

M — UneN(M - B[I, %])

=J A

neN

:Mi{xh

el cual es abierto pues es complemento de un singleton, los cuales siem-
pre son cerrados.

Es claro que estos conjuntos forma una cadena ascendente A; C Az C

.., pues a medida que n crece, cada A,, corresponde a haberle quitado
a M discos cada vez mas pequenos. Por tanto, cualquier unién finita
de estos conjuntos corresponde a aquel que sea més grande (en este
caso, al que tenga mayor indice).

Sin embargo, esto es lo que nos hace llegar a la contradiccién: como
x € 05, se sigue que cada Bz, %] tiene al menos un punto de S, lo que
implica que a cada A, le falta al menos un punto de S, por lo que a
cualquier unién finita de los A,, le falta al menos un punto de S. Por
tanto, estos conjuntos son un cubrimiento por abiertos de S que no
admite un subcubrimiento finito, lo que contradice la compacidad de
S, de lo que concluimos que S debe ser efectivamente un cerrado. [

Observacion. De hecho, probamos algo mas fuerte: en la segunda implicancia
nunca usamos el que K era compacto. Esto no es una coincidencia o un error,
pues el resultado general es que en todo espacio métrico—no necesariamente
compacto—un conjunto compacto es cerrado.
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Corolario 1.6.5. Sea M un espacio métrico.

1. Si (Kx)xer es una familia de compactos de M, entonces (1o Kx es
compacto.

2. Si M es compacto entonces es acotado.

Demostracién. Probemos cada apartado.

1. Si (Kx)xer es una familia de compactos de M, entonces cada uno es
cerrado en M, por lo que su interseccién también es un cerrado en M.
Por tanto, esta interseccion también es un cerrado de cada K, y por
la proposicién anterior, un compacto en cada Ky, por lo que lo es en
M.

2. Si M es compacto, entonces cualquier cubrimiento abierto C de M
admite un subcubrimiento finito C’, 1o que nos indica que M es acotado.

O

Otra propiedad importante es que las funciones continuas mapean com-
pactos en compactos:

Proposicién 1.6.6. Sean M, N espacios métricos y f: M — N continua.
Si K C M es compacto en M, entonces f(K) es compacto en N.

Demostracion. Consideremos un cubrimiento por abiertos

J(K) € Uxer Ax-

Como f es continua y cada Ay abierto, se sigue que cada conjunto preimagen
F71(A)) es un abierto de M. Ahora, notamos que, tomando preimagen en
la expresién anterior, se tiene

FTHE)) S F 7 (Uner AN
= U/\EL f_l(Ak)7

donde en la contenciéon usamos que el tomar preimagen preserva inclusion,
y en la igualdad el que la preimagen de una union es la unién de las pre-
imégenes. Como K C f*(f(K)), esto muestra que estas preimagenes son
un cubrimiento por abiertos de K.

La compacidad de K nos permite elegir un subcubrimiento finito K C
Ui, F7(Ax,). Por tanto, tomando imagen se tiene que

FK) € F(UZ F71(AN)
= ( ?:1 ffil(AAi))
c U?:l A>\i7

donde en la primera contencién usamos que el tomar imagen preserva inclu-
sién, en la primera igualdad estamos usando que la imagen de una unién es
la unién de las imagenes, y en la segunda contencién el que la imagen de la
preimagen de un conjunto estd contenida en el conjunto.

Por tanto, hemos encontrado un subcubrimiento abierto finito del origi-
nal, lo que prueba la compacidad de f(K). O
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Corolario 1.6.7. Sea K un espacio métrico compacto y M wun espacio
métrico. Sea f: K — M

1. f envia cerrados de K a cerrados de M.

2. La imagen de f es acotada.

Demostracion. Verifiquemos ambos puntos.

1. Sea F' C K cerrado. Como K es compacto, entonces un cerrado F'
también es compacto. Por la proposicién anterior, se tiene que f(F) es
compacto en M, y nuevamente concluimos que f(F) es cerrado en M.

2. El lema anterior nos indica que la imagen de K es compacta, por lo
que debe ser acotada en M. O

Ejemplo 1.6.8. El primer apartado del resultado anterior es til para pro-
bar que conjuntos son compactos. A modo de ejemplo, los dado un camino
continuo f: [a,b] — M, la curva f([a,b]) es compacta en M. Asi, la circunfe-
rencia unitaria en R? es compacta pues es la imagen de [0, 27] bajo la funcién
t — (cost,sint).

El siguiente resultado caracteriza la compacidad:

Teorema 1.6.9. Sea M un espacio métrico. Son equivalentes
1. M es compacto (Propiedad de Borel).
2. Todo subconjunto infinito de M posee algin punto de acumulacion.

3. Toda sucesion en M posee alguna subsucesién convergente (Propiedad
de Bolzano).

Demostracion.

1 = 2: Supongamos que M es compacto, y sea X C M un conjunto sin puntos
de acumulacién. Probemos que esto fuerza a X a ser finito. Suponga-
mos que fuese infinito. Por definicién, X = X U X', y por hipétesis se
tiene que este unién es simplemente X. Por tanto, X es un conjunto
cerrado en M, y por ende compacto. Ahora, el que X no tenga pun-
tos de acumulacién nos indica que para cada z € M, hay una bola
B(z,r;) que contiene a lo mds finitos puntos de X. Estas bolas son
un cubrimiento por abiertos de X, que no admite un subcubrimiento
finito, pues al retirar siquiera una de las bolas de la coleccién ya no
cubririfamos X. Esto contradice la compacidad de X, por lo que X
debe ser finito.

2 = 3: Supongamos que todo subconjunto infinito de M tiene algin punto de
acumulacién. Consideremos una sucesién en M. Si tiene finitos térmi-
nos distintos, es claro que admite una subsucesién convergente. Si tiene
infinitos términos, entonces posee algin punto de acumulacién, que es
limite de alguna subsucesion.

3 = 1: Sea (U;); un cubrimiento por abiertos de M. El plan es verificar que
podemos encontrar un radio § > 0 tal que las bolas de este radio estén
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dentro de algin U;, y luego que podemos encontrar un subcubrimiento
usando estas bolas.

En efecto, supongamos que no, por lo que para cada n € N, escogien-
do el radio 6, := %, podemos encontrar una bola B(zn,dn) que no
esté contenida completamente en ningtin U;. Por hipdtesis, la sucesién
de centros (zn)nen posee alguna subsucesién convergente, digamos a
a. Dicho a estd contenido en algiin Uj, que al ser abierto conteien a
alguna bola B(a,¢). Asi, por definicién de convergencia, podemos en-
contrar algtin k € N suficientemente grande de modo que zy, € B(a,¢).
Como esta bola es abierto, podemos encontrar otra boal centrada en
zr, contenida en B(a,¢), por lo que estd contenida en Uj, lo que es
contradictorio.

Afirmamos que hay finitas bolas de radio 0 que cubren a M. Suponga-
mos lo contrario. Asi, tomamos z1 € M, y la bola By := B(z1,9) no
cubre M, de modo que podemos elegir xo € M — B;. Inductivamente,
elegimos z, € M —B;1U...UB,,_1 paracadan € N. As{, deberiamos po-
der extraer una subsucesién convergente de (zn)nen, pero d(z;, z;) < 0,
por lo que dicha sucesiéon no puede converger.

Se puede demostrar que el productos de dos espacios métricos compactos
es compacto:

Proposicién 1.6.10. Si K, L son espacios métricos compactos, entonces su
producto cartesiano K X L también es compacto. Inductivamente, el producto
finito de espacios métricos compactos es compacto.

Demostracion. Sean K, L espacios métricos compactos. Probemos que su
producto K x L es secuencialmente compacto. Sea (z»)nen la sucesién dada
por zn := (Tn,yn) € K x L, donde (Zn)nen ¥ (Yn)nen son sucesiones en K
y L respectivamente. Por la compacidad de K, existe una subsucesién de
(zn)nen convergente a un x € K, digamos indexada por N1 C N. Por tanto,
(Yn)nen, es otrasucesién en L, y por la compacidad de L, podemos encontrar
otra subsucesién de (yn)nen, convergente a un y € L, digamos indexada por
N2 C N1 C N. Se sigue que (zn)nen, €s una subsucesién convergente a (z, y)
de nuestra sucesién original, lo que prueba que K X L es secuencialmente
compacto, y por ende compacto. O

La generalizacion natural del resultado anterior es pasar a productos
numerables.

Teorema 1.6.11 (Cantor-Tychonov). Un producto numerable de espacios
métricos compactos es en si compacto si cada factor es compacto.

Demostracion. Sea {Mp}, .y un conjunto de espacios métricos compactos, y
sea M = HnEN M,,. Probemos que es secuencialmente compacto, utilizando
un argumento similar al lema anterior. Sea (z,)nen una secuencia arbitraria
en M. Para cada n € N fijo, denotaremos por (Zn:)ien a la n-ésima entrada
de nuestra sucesion, que es a su vez una sucesion.

Utilizando la compacidad de M;, podemos encontrar una subsucesién de
(z1i)ien convergente a un a1 € Mlﬂ digamos indexada por N1 € N. Luego,

4Este a1 no es necesariamente unico, por lo que debemos invocar el Axioma de Elec-
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(z2i)ien, esotrasucesién en Ma, y por compacidad podemos encontrarle una
subsucesiéon convergente a un as € Mz, indexada por, digamos, No C N; C
N. Procediendo de este modo, encontramos una familia numerable de indices
N DNy DNz D...,yun punto a := (a1,az2,...) € M. Por el Axioma de
Eleccion, existe un N. C N de modo que su j-ésimo elemento sea el j-ésimo
elemento de N; (todos los conjuntos ordenados de forma creciente). Se sigue
que (Zn)nen, €s una subsucesién convergente a a € M de la original, lo que
prueba que m es secuencialmente compacto, y por ende compacto. O

1.7. Completitud

Vamos a estudiar otra abstraccién de un fenémeno que ocurre en R.
Supongamos que estamos en un mundo donde nuestro sistema numérico es
Q. Una construccién estandar es la raiz cuadrada de un nimero, pero hay
veces que la situacién se complica. Por ejemplo, se puede probar que la
raiz cuadrada de 2, asumiendo que existe, no es un numero racional. Por
otro lado, esta aparece como solucién de la ecuacién z? — 2, y como tal
se puede aproximar (eg., usando Newton—-Raphson), como una sucesién de
nimeros racionales, conocida como su expansion decimal. Por lo anterior,
esta sucesién no converge en Q, pero la distancia entre sus término es cada
vez mas pequena, de hecho, arbitrariamente pequenia. Estas sucesiones se
llaman Cauchy, y nuestro problema se parcha afadiendo formalmente los
limites de las sucesiones Cauchy, lo que resulta en R, la complecion de Q.
Vamos a ver esta demostracién formalmente mas adelante.

Definicién 1.7.1. Sea M un espacio métrico. Decimos que una sucesién
(zn)nen en M es Cauchy si para todo e > 0, existe N € N tal que d(zm, zn) <
€ para todos m,n > N.

Observacion.

1. Esta definicién dice que la distancia entre los términos de una suce-
sién Cauchy se va haciendo cada vez més pequena. Esto contrasta con
la definicién de sucesién convergente, en la que es la distancia entre
términos de la sucesién y un punto la que se va haciendo cada vez mas
pequena.

2. Toda subsucesién de una sucesiéon Cauchy, también es Cauchy: basta
notar que dado € > 0, los términos en posiciones mayores a algin
N € N siguen estando a distancia menor que ¢, independientemente si
forman parte o no de alguna subsucesion.

Ejemplo 1.7.2.

1. Las sucesiones Cauchy de un espacio métrico finito son precisamente las
que son eventualmente constantes: si (zn)nen es una sucesiéon Cauchy
en un espacio métrico finito M := {ma,...,m,}, entonces para € :=
miny<; j,<r {d(x;, ;) # 0}, se tiene que existe N € N tal que si 7,5 >
N, entonces d(z;i, ;) < €, por lo que d(z;,z;) = 0y por tanto z; = z;.

cién. Kelley probé que dicho Axioma es légicamente al Teorema que estamos estudiando
en [Kel50].
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2. De forma similar, en un espacio métrico con la métrica cero-uno las su-
cesiones Cauchy también son las eventualmente constantes: si (zn)nen
es Cauchy, entonces para 0 < € < 1 se tiene que existe un N € N tal
que d(zi,z;) < €. Esto fuerza que d(z;,z;) = 0, y por tanto x; = ;.

Una pregunta natural es como se relacionan los conceptos de sucesiones
convergentes y sucesiones Cauchy. Intuitivamente, como en el caso de una
sucesién convergente los puntos de una sucesién se van acercando cada vez
mas al limite, se tiene que estos puntos también tiene que estar acercandose
entre si.

Lema 1.7.3. Toda sucesion (T, )nen convergente en un espacio métrico M
es Cauchy.

Demostracion. Sea (zn)nen como en el enunciado. Supongamos que &, — a.
Por tanto, dado € > 0, existe N € N tal que d(zn,a) < § para todo n > N.
Por tanto, para todos m,n > N, por la desigualdad triangular de M se tiene
que d(Tm,Tn) < d(Tm,a) + d(zn,a) < §+ § = €, es decir, la sucesién es

efectivamente Cauchy. O
Observacion.
1. El contrarreciproco del lema [[.7.3] nos dice que si una sucesién no es

Cauchy, entonces no es convergente.

2. Es importante notar que una sucesiéon sea Cauchy no implica que sea
convergente: consideremos Q como subespacio métrico de R, sea a €
R — @, y consideremos una sucesién en R de nimeros racionales que
converge a a (eg., la expansién decimal de a).

Notemos que esta sucesién converge en R, por lo que el lema [1.7.3
nos dice que es Cauchy en R, y como Q es subespacio métrico de R,
entonces la sucesién es Cauchy en Q. Sin embargo, a € Q, es decir, la
sucesion no es convergente en Q.

Lema 1.7.4. Toda sucesion (xn)nen Cauchy en un espacio métrico M es
acotada.

Demostracion. Sea (xn)nen como en el enunciado. Como es Cauchy, dado
e =1, existe N € N tal que d(zn,zm) < 1 para todos n,m > N, es decir,
que el conjunto {z, | n > N} estd contenido en una bola B de didmetro
1. Se sigue el conjunto de los términos de la sucesién estd contenido en
{z1,...,2zn}UB. Como cada conjunto es acotado, su unién también lo es. [

Observacidn. El contrarreciproco de[[.7.4] nos dice que si una sucesién no es
acotada, entonces no es Cauchy (y por tanto no es convergente). También, es
importante notar que una sucesion sea acotada no implica que sea Cauchy:
consideremos la sucesién (2,0,2,0,...) en R. Esta sucesién es claramente
acotada (eg., por 2), pero no es Cauchy, pues la distancia entre términos es
siempre 0 o 2, en vez de arbitrariamente pequena.

Lema 1.7.5. Si una sucesion (xn)nen Cauchy en un espacio métrico M
tiene alguna subsucesion convergente, entonces es convergente, y el limite es
el mismo que el de la subsucesion.
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Demostracion. Sea (Tn)nen como en el enunciado, y sea (zn,, )keny una subsu-
cesion de (zn)nen que converge a a € M. Probemos que igualmente z, — a.

Sea & > 0. Como (zn)nen es Cauchy, existe N1 € N tal que d(zm,zn) < §
para todos m,n > Ni. Por otro lado, como (zn, )ken €s convergente, existe
N2 € N tal que d(zn,,a) < § para todo ny > N2. Sea N := max {N1, Na}.
Por tanto, por la desigualdad triangular de M, se tiene que

e €
d(xn,a) < d(@n, Tn,) + d(Tay,, a) < 3 + 5=6
para todos n, Zn, > N Esto es por definicién que 2, — a. O

Observacidn. El contrarreciproco de[[.7.5]dice que si una sucesién Cauchy no
es convergente, entonces todas sus subsucesiones divergen. También, si una
sucesién posee dos subsucesiones que convergen a limites distintos, entonces
esta no puede ser Cauchy.

Definicién 1.7.6. Decimos que un espacio métrico M es completo si toda
sucesion Cauchy en M es convergente.

Ejemplo 1.7.7.
1. Q no es un espacio métrico completo, como muestra el caso de /2.

2. Los espacios con la métrica cero-uno son completos: cualquier sucesién
Cauchy acéd es eventualmente constante , y las sucesiones (eventual-
mente) constantes son convergentes.

El siguiente resultado es crucial para el andlisis y cédlculo real, y es una
muy buena aplicacién de toda la teoria que hemos revisado hasta ahora.

Teorema 1.7.8. Los numeros reales R son un espacio métrico completo con
la métrica usual.

Demostracion. Sea (Tn)nen una sucesiéon Cauchy en R. Para cada n € N,
definimos el conjunto X, := {z;: ¢ > n} = {x;, xit1,...}. Notemos que si
1> j, entonces X; O X, es decir, X1 O X2 D ...

Como X; tiene a todos los términos de la sucesién, y esta es Cauchy, se
sigue que X es acotado por algin b € R, y como X; contiene a X, para
cada n € N| se tiene que estos también son acotados. En tanto también son
no vacios, tienen infimo. Sea a, := inf X,, para cada n € N.

Si consideramos la sucesién (an)nen, como esta es mondtona (a1 < az <
--+) y acotada por b, entonces converge al supremo del conjunto de los térmi-
nos de la sucesién, digamos a a := sup {an}, - Probemos que z, — a.

Sea € > 0. Como (zn)nen es Cauchy, entonces existe algin N € N tal
que |z, — zm| < € para n,m > N. Como a es supremo de {an},,y, se tiene
que a@ — € no es cota superior de {an},y, es decir, existe k € N tal que
a — ¢ < ap < a. En particular, como (an)nen €s creciente, podemos contrar
k > N es decir, existe k € N tal que a — e < ax < a.

Por otro lado, ax es infimo de Xy, por lo que ax + € no es cota inferior de
X, es decir, existe j € N tal que ar < x; < ax + €. En particular, x; € X,
por lo que existe j > k tal que ar < z; < ar + €. Por tanto, se tiene la
cadena de desigualdades

a—e<ar<zj<apt+e<a-te,
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para j,k > N. Es decir, para n > N se tiene que |z, —a| < €, por lo que
efectivamente x,, — a. Por tanto, R es completo. O

El siguiente resultado dice que en un espacio completo, ser cerrado es
equivalente a ser completo:

Proposicién 1.7.9. Sea M un espacio métrico completo. Un subespacio
F C M es cerrado si y solo si es completo.

Demostracion. Probemos ambas implicancias.

= : Supongamos que F' C M es cerrado. Sea (= )nen una sucesién Cauchy
en F'. Como F es cerrado, entonces a := limy, o n € F, lo que prueba
que F' es completo.

<= Supongamos que F' C M es completo y consideremos una sucesién
(zn)nen en F convergente a a € M. Por esta sucesion también
es Cauchy en M, por lo que es Cauchy en I, por lo que es convergente
en F', lo que prueba que F' es cerrado. O

El siguiente teorema caracteriza los espacios completos como aquellos
que poseen la propiedad de los intervalos encajados:

Teorema 1.7.10 (Interseccién de Cantor). Un espacio métrico M es com-
pleto si y solo si para toda cadena decreciente Fy D F» D ... de cerrados no-
vacios en M tales que lim,_ o diam(F,) = 0, se tiene que ﬂneN F, ={a}
para algin a € M.

Demostracion. Probemos ambas implicancias.

= : Sean M completo y {Fnr}, .y como en el enunciado. Para cada n, es-
cogemos un z, € F, (cosa que podemos hacer porque cada F, es
no-vacio). Esto define una sucesién (zn)nen en M. Podemos probar
que esta sucesién es Cauchy en M.

En efecto, dado N € N, se tiene que si m,n > N, entonces, F,, F, C
Fy,y por tanto Zm, xn € Fn. Por otro lado, como lim,, .o diam(F,) =
0, se tiene que para cada ¢ > 0 existe un N € N de modo que
diam(Fn) < e. Por tanto, dado € > 0, se tiene que existe N € N
de modo que

m,n>N = ZTm,Tn € Fn = d(xm,zn) < diam(Fy) < g,

por lo que (zn)nen es efectivamente Cauchy en M, y como M es com-
pleto, se tiene que (z,)nen converge.

Sea a := lim,,— 00 Ty. Para ver que a € ﬂneN F,,, notamos lo siguiente:
a partir de cada N € N, se tiene que x, € Fn para todo n > N, por
lo que limy, 00 ©, = a € Fn. Como Fny C Fn_1 C ... C Fi, se tiene
que a € Fy, para todo k € N, y por tanto a € ﬂneN F,.

Para probar que la intersecciéon no posee otro elemento, supongamos
lo contrario: sean a,b € ﬂneN F,. Por tanto, en particular se tiene
que d(a,b) < diam(F,) para todo n € N, por lo que en particular
d(a,b) < limy_ oo diam(F;,) = 0, de lo que d(a,b) = 0, y por definicién

de métrica, a = b.
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<= Supongamos que la interseccién de una cadena decreciente cerrados no-
vacios en M con didmetro tendiendo a 0 es un tinico punto. Para probar
que M es completo, probaremos que es secuencialmente completo.

Sea (n)nen una sucesién Cauchy, y definamos Xn := {z;},,,. Es claro
que X1 D X2 D ... es una cadena decreciente de conjuntos no-vacios,
por lo que X; O X2 D ... es una cadena decreciente de conjuntos
no-vacios cerrados en M.

Como (zn)nen es Cauchy, la distancia entre puntos es decreciente a
medida que crece n, por lo que se tendra que

lim diam(X,) = lim diam(X,) = 0,

n—oo n—00

y por hipétesis se tendrd que () Xn = {a} para algin a € M.

neN
Asi, a es el limite de una subsucesién de (Tn)nen, y cOmo esta es
Cauchy, se tiene que en verdad lim, o0 n = a € M. Como (Zn)nen
era arbitraria, se tiene que cualquier sucesién Cauchy converge en M,
por lo que M es efectivamente completo.
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1.8. Conexidad
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1.9. Continuidad uniforme

La continuidad que revisamos es local, pero hay veces que esta condicién
no es suficiente para deducir resultados importantes. Por ejemplo, para de-
mostrar que toda funcién [a, b] — R continua es Riemann-integrable, Cauchy
utilizé (sin darse cuenta) el hecho no trivial de que las funciones continuas
en un intervalo cerrado y acotado son de hecho uniformemente continuas, en
el sentido de que no solo mapean vecindades de un punto a vecindades de
la imagen del punto, sino que mapean a puntos cercanos de modo que sus
imégenes sean cercanas:

Definicién 1.9.1. Sean (M, d) y (N, p) espacios métricos. Decimos que una
funcién f: M — N es uniformemente continua si para todo € > 0 podemos
encontrar 6 > 0 de modo que si d(z,y) < 0 entonces p(f(z), f(y)) < €.

Observacion.

1. La diferencia légica con la continuidad es solo el orden de los cuantifica-
dores. Esto se traduce a que el § que vayamos a escoger, solo dependera
del valor de €, y no de los puntos que elijamos.

2. Es claro que si f es uniformemente continua, entonces es continua.
El reciproco no es cierto. Por ejemplo, al considerar la funcién R — R
dada por f(z) := z? y dado 6 > 0 arbitrario, se tendrd que (asumiendo
z > 0)

2

:z5+%. (1.9.1.1)

#(e+3) -1

Se tiene que |x +d/2 — x| = [6/2] < §, pero el lado derecho de la
ecuacién [LL9. 1.1l no es acotado como funcién de .

Lema 1.9.2. De estar bien definida, la composicion de funciones uniforme-
mente continuas es uniformemente continua.

Demostracion. La demostracién del lema [[L5.2] funciona mutatis mutandis.

O
Ejemplo 1.9.3.

1. Toda funcién lipschitziana es uniformemente continua. La demostra-
cién del ejemplo funciona mutatis mutandis.

2. La suma de funciones uniformemente continuas es uniformemente con-
tinua, lo que es directo de probar. Sin embargo, el producto de funcio-
nes uniformemente continuas no ha de serlo, como ejemplifica & — 2>
definida R — R. Sin embargo, al restringir esta funcién a un intervalo
acotado, se vuelve lipschitziana, y por tanto uniformemente continua.

Recordemos que una funcién es continua si mapea sucesiones convergen-
tes a sucesiones convergentes, preservando el limite. Algo similar ocurre con
funciones uniformemente continuas y sucesiones Cauchy:
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Proposicién 1.9.4. Sean M, N espacios métricos. Si f: M — N es uni-
formemente continua, entonces mapea sucesiones Cauchy en M a sucesiones
Cauchy en N.

Demostracién. Consideremos (zn)nen una sucesién Cauchy en M, y conside-
remos la sucesién (f(zn))nen en N. Sea € > 0. Por la continuidad uniforme
existe 6 > 0 de modo que si d(z,y) < ¢, entonces d(f(z), f(y)) < e. Por
la propiedad de Cauchy, existe N € N de modo que si m,n > N, entonces
d(xm,zn) < d. Por tanto, d(f(xzm), f(zn)) < €, lo que prueba que la sucesién
de imagenes es Cauchy en N. O

Observacion.

1. El que la continuidad sea uniforme es necesario: una funcién que es
solo solo continua, como

fiR-—{0} —R
T — 1

mapea la sucesiéon Cauchy (%)nGN en R a la sucesién (n)nen, que no
es Cauchy en R.

2. Con esto, podemos probar que el que una funcién mapee sucesiones
Cauchy a sucesiones Cauchy no es un criterio para chequear continui-
dad uniforme: la funcién real z — 22 es continua, por lo que mapea
sucesiones convergentes (y por tanto Cauchy), en sucesiones conver-
gentes (y por tanto Cauchy), pero no es uniformemente continua.

El siguiente resultado dice que un producto finito de espacios completos,
es completo:

Proposiciéon 1.9.5. Si M, N son espacios métricos completos, entonces
M x N es completo. Inductivamente, si M, ..., M, son espacios métricos
completos, entonces [];_, M; es completo.

Demostracion. Sea (zn)nen una sucesién Cauchy en M x N dada por
2n = (Gn, bn),

para cada n € N. Como las proyecciones m1: M X N — M y ma: M X
N — N son uniformemente continuas, se sigue que (Zn)nen ¥ (Yn)nen son
Cauchy en M y N respectivamente, por lo que son convergentes en M y N
respectivamente, debido a la completitud, digamos a a y b respectivamente.
Se sigue que z, — (a,b) € M x N, de lo que la sucesién es Cauchy, y por
tanto el espacio M x N es completo. O

Observacion. El reciproco de este resultado también es cierto, pero para
probarlo se necesitan herramientas que si bien no son complicadas, no hemos
revisado.

Ejemplo 1.9.6. Como ya probamos que R es completo, es directo que R"
es completo para cualquier n € N.

Podemos generalizar este resultado para productos numerables:
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Proposicién 1.9.7. Si (My)nen es una familia numerable de espacios métri-
cos completos, entonces HieN M; es completo.

Demostracion. La idea es andloga al resultado anterior, pero la notacién
complica algo las cosas. Sea ((Zmn)nen)men una sucesién Cauchy en HneN M;.
Cada proyeccién m;: [[,cy Mi = M; es uniformemente continua, por lo que
mapea sucesiones Cauchy a sucesiones Cauchy. En particular cada (%n )nen
es Cauchy en M;, por lo que es convergente en M;, digamos a a;. Se sigue
que ((Tmn)nen) — (a1, az,...), lo que prueba que el producto numerable es
efectivamente completo. O

Observacion. Igualmente, el reciproco de este resultado es cierto, pero no lo
probamos.

El siguiente resultado es importante en general. Por ejemplo, es el pa-
so crucial para demostrar que toda funcién continua en R es Riemann-
integrable.

Proposicién 1.9.8 (Heine—Cantor). Sean K, N espacios métricos. Si K es
compacto, entonces cualquier funcion continua f: K — N es uniformemente
continua.

Demostracion. Supongamos, buscando una contradiccién, que la continui-
dad de f no fuese uniforme. En tal caso, existe € > 0 de modo que para
cualquier § > 0, en particular para §, := %, podemos encontrar ,,y, € K
de modo que d(xn,Yn) < 6n, pero d(f(zn), f(yn)) > €. Consideremos las su-
cesiones formadas por los z,, y los y,. En virtud de la compacidad, podemos
encontrar subsucesiones, ambas convergentes a un a € K. Como f y d son
continuas, se tiene que

lim_ d(f (), f(yn)) = d( lim_f(za), lim f(yn))

n—oo n—o0

(1t ) 1 (i 100)
d(f(a), f(a)) =0,

lo que es contradictorio. O






Capitulo 2

El espacio de las funciones
continuas sobre un compacto

Recordemos del Ejemplo 7?7 que dado un conjunto X, el conjunto B(X)
es un espacio métrico con la funcién

deo(f, 9) == sup [f(z) — g(z)l,

que puede ser inducida por la norma ||-||_ . La convergencia en esta nor-
ma/métrica, se llama uniforme. Resulta ser que es completo:

Teorema 2.0.1. Dado un conjunto X, se tiene que B(X) es un espacio de
Banach, es decir, es completo respecto a la métrica inducida por la norma-
infinito ||| . -

Demostracion. En efecto, consideremos una sucesién Cauchy (fn)nen en
B(X). Por definicién esto es que dado € > 0, existe N € N tal que || frn — fnl|
€ para todos m,n > N. Esto nos dice que como

|fm () = ()] < lfm = fullo <e

para todo z € X, entonces la sucesién (|fn(z)|)nen es Cauchy en R para
todo z € X, y por tanto convergente en R. Asi, nuestro candidato a limite
puede ser definido punto a punto como

fa) = M fu(a).

Primero, corresponde chequear que f es acotada. En efecto, toda sucesién
Cauchy es acotada, por lo que existe M € R de modo que || f,||,, < M para
cada n € N. Como

[ee]

|fn(@)] < [[fnlle < M,
se sigue, tomando n — oo, que |f(z)| < M, es decir, que f es efectivamente
acotada.
Resta probar que nuestra sucesién original converge a f. Esto es directo,
pues para n > N se tiene que

1o = Fllow = T fn = finlloe <&,

lo que prueba que efectivamente f, — f € B(X). O

33

<
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Si X es un espacio métrico compacto (eg., [a,b] con la métrica de R), el
conjunto de las funciones continuas a valores reales C(X) es un subespacio
métrico de B(X) gracias al Teorema del Valor Extremo, y también es una
R-espacio vectorial. Este espacio también es completo:

Teorema 2.0.2. Dado X un espacio métrico compacto, C(X) es un espacio
de Banach, es decir, es completo respecto a la métrica inducida por la norma

[Nl -

Demostracién. Recordemos que en un espacio completo, un subespacio es
completo si y solo si es cerrado. Por tanto, basta probar que C(X) es un
subespacio cerrado de B(X). Para ello, verificamos que que toda sucesién
convergente de funciones continuas tiene como limite a una funcién continua,
lo que es un argumento breve: como X es compacto, las nociones de funcién
continua y uniformemente continua coinciden, y sabemos que el limite de
funciones uniformemente continuas es uniformemente continuo. O

En este contexto, el espacio C(X) también es un anillo (conmutativo, con
unidad) equipado con el producto punto a punto. La estructura de anillo y
de R-espacio vectorial son compatibles, en el sentido que la accién de R en
C(X) distribuye sobre el producto de R.

M4s generalmente, dado un cuerpo k, decimos que un anillo A (con-
mutativo, con unidacEI) es una k-dlgebra si es un k-espacio vectorial, y las
operaciones involucradas son compatibles en el sentido del parrafo anterior.
Un ejemplo importante es el espacio de las funciones polinomiales con coefi-
cientes reales, restringidas a algin intervalo cerrado:

Ejemplo 2.0.3. Sea I C R un intervalo compacto, y consideremos
Pu(l):=<pelC):p= Zajxj, aj; €R
j=0

De nuestros cursos anteriores, sabemos que toda funcién polinomial a valores
reales definida en un intervalo compacto es continua, es decir P, (I) C C(I),
que P, (R) es un R-espacio vectorial, y que es un anillo. Para verificar que es
una R-algebra, hay que verificar la condicién de compatibilidad, que en este
caso se lee

(af)(ﬁg) = (aﬁ)(fg)7 a7/3 € Ra fag € PW(R)v

que es clara al expandir f y g.

2.1. Meétodos de aproximaciones sucesivas

Un ejemplo importante de funciones continuas son las de Lipschitz, que
son aquellas limitadas en cuanto pueden cambiar. Por ejemplo, estas se utili-
zan para probar el teorema del punto fijo de Banach; también, pedir que una
funcién sea lipschitziana es la condicién crucial para el teorema de Picard—
Lindelof de existencia y unicidad de soluciones del problema de valor inicial.

1La existencia de la unidad es importante pues implica que contiene a todas las
constantes (ie., los elementos de k). Hay autores que estudian otras configuraciones. Por
ejemplo, se pueden considerar dlgebras no-unitarias, no-conmutativas, o no-asociativas,
las que son naturales en otros contextos. Acd trabajaremos el caso més simple.
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Definicién 2.1.1. Sean M, N espacios métricos. Una funcién f: M — N es
lipschitziana si existe una constante ¢ > 0 tal que d(f(z), f(y)) < ¢-d(z,y)
para todos z,y € M.

Ejemplo 2.1.2. El ejemplo mas sencillo de funciones lipschitzianas son las
funciones constantes, porque la distancia entre imagenes bajo una funcién
constante siempre es 0, por lo que cualquier ¢ funciona.

La propiedad importante de estas funciones, es que son todas continuas,
por lo que cada ejemplo de funcién lipschitziana es ejemplo de funcién con-
tinua:

Proposicion 2.1.3. Toda funcidon lipschitziana f: M — N es continua.

Demostracion. Sea f lipschitziana de constante c. Debemos probar que f
es continua. Sean a € M y £ > 0, y consideremos § := £/c. Se sigue que
d(f(z), f(a)) < c¢-d(z,a), pues f es lipschitziana. Por tanto, si d(x,a) <
d = g/c, se tiene que d(f(z), f(a)) < ¢c-e/c =¢, es decir, f es efectivamente
continua. O

Las funciones lipschitzianas tienen estructura de espacio vectorial:

Proposicién 2.1.4. El conjunto Lip(R) de las funciones lipschitzianas R —
R es un R-espacio vectorial con la suma y escalamiento punto a punto.

Demostracion. Consideremos f,g: M — R funciones lipschitzianas de cons-
tantes ¢,k y una constante A € R. Para probar que (f + g) también es
lipschitziana, notemos que

I(f +9)(@) — (f+9) W] = f(2) +g(z) — f(y) — 9(v)]
=|[f(x) = f()] + [9(z) — g(y
<|f(z) = f)| + |g(z) — g(v)
< cd(z,y) + kd(z,y)
= (c+k)d(z,y),

)]l
|

donde la tercera linea se obtuvo por desigualdad triangular, y la cuarta
porque estamos suponiendo f, g lipschitzianas. Para probar que Af es lips-
chitziana, notamos que

|((Af) (@) — (AH)W)] = A f(z) = Af(y))]
= |Allf (@) = f(v)l
< |A|ed(z, y). O

Para exhibir ejemplos, conviene desarrollar un criterio que permita veri-
ficar si una funcién real es lipschitziana. Sirve ver si tiene primera derivada
acotada:

Lema 2.1.5. Si f: R — R es diferenciable con derivada acotada por enton-
ces es lipschitziana de constante ¢ := sup {|f’(z)|}.

Demostracion. Dado ¢ como en el enunciado, existe algin intervalo cerrado
I :=a,b] en el que f’ es acotada por c. El teorema del valor medio nos dice



CAPITULO 2. EL ESPACIO DE LAS FUNCIONES CONTINUAS SOBRE UN
COMPACTO

que dados z,y € I arbitrarios, existe un z < z < y tal que f(z) — f(y
f'(2)(x — y). Por lo mencionado antes, se tiene que |f'(z)| < ¢, por lo
tomando valor absoluto de la expresién anterior, se tiene que |f(z) — f(y)
clz —y|.

=0 —
OIAS I

Ejemplo 2.1.6.

1. Por tanto, funciones como las polinomiales restringidas a intervalos,
seno o coseno, son todas continuas.

2. Si bien esta condicién es suficiente para determinar si una funcién
es lipschitziana, no es necesaria. Por ejemplo, el valor absoluto usual
f(x) := |z| es lipschitziana de constante 1, pero no es diferenciable en

3. Decimos que una funcién es una contraccion si es lipschitziana de cons-
tante 0 < ¢ < 1. Si f es lipschitziana de constante ¢ = 1, decimos que
es una contraccion débil.

4. En cualquier espacio vectorial normado (E, ||-]|), la norma es una con-
tracciéon débil, pues

d(ll[ls lyll) = Izl = Iyl
= |lllz =0l — [ly — oll||
<llz -yl
=d(z,y).

Un problema recurrente en sistemas dindmicos y el estudio de ecuaciones
diferenciales es el encontrar puntos fijos. Recordemos la definicion.

Definicién 2.1.7. Sea A un conjunto y f: A — A. Decimos que z € A es
un punto fijo de f si f(x) = z.

Existen multiples teoremas que nos aseguran la existencia de estos puntos
fijos. En esta seccién estudiaremos un par de estos resultados para espacios
métricos, aprovechando que ya tenemos multiples herramientas en nuestro
arsenal.

Teorema 2.1.8 (Punto fijo de Brouwer). Consideremos R como espacio
métrico. Toda funcion continua f: [0,1] — [0,1] tiene al menos un punto
fijo x € [0,1].

Demostracion. Consideremos la funcién auxiliar g(z) := f(z) — z. Notamos
que esta funcién es continua. Como f([0,1]) C [0,1], se tiene que g(0) =
f(0)—0 = f(0) > 0,y que g(1) = f(1) —1 < 0. El teorema del valor
intermedio nos asegura que existe = € [0,1] de modo que g(x) = 0, es decir,
tal que f(z) = z. Por tanto, hemos encontrado un punto fijo de f. O

Hacemos dos observaciones. Primero, este resultado podria haber sido
revisado en un curso de cédlculo real sin problemas. Segundo, este teorema
se puede generalizar a R™, pero no lo estudiamos pues no nos es relevante.
Ahora, probemos algo mas interesante, y que si usa herramientas de anélisis.
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Este teorema es clave para demostrar, por ejemplo, el Teorema de Picard—
Lidelof sobre existencia y unicidad de problemas de Cauchy en Ecuaciones
Diferenciales.

Teorema 2.1.9 (Punto fijo de Banach). Sea M un espacio métrico. Si M
es completo, entonces toda contraccion f: M — M posee un unico punto
fijo. Mds atn, este punto fijo estd dado por el limite de la drbita bajo f de
cualquier xo € M.

Demostracion. Consideremos la érbita de o bajo f definida recursivamente
por

Xo = Zo,

ZTn := f(xn—1) paran > 1.

Para probar el resultado hay que probar que esta érbita siempre converge,
que este limite es punto fijo de f, y que este punto fijo que encontramos
resulta ser tinico. Vamos en orden.

Para probar que (z,)nen converge, podemos aprovecharnos de que esta-
mos suponiendo que M es completo y probar tinicamente que la sucesién es
Cauchy. Notamos que, estudiando términos consecutivos, se tiene

d(z1,2) = d(f(20), f(z1)) < cd(zo,21),
y también que
d(x2,x3) = d(f(x1), f(22)) < cd(z1,22) < d(x0,21).
Inductivamente, se sigue que
(T, Tot1) < "d(zo, 1), (2.1.9.1)

para todo n € N. Luego, notamos que si n < m, entonces m = n + p para
algin p € N, lo que nos permite usar la desigualdad triangular multiples
veces, obteniendo que

d(@n,m) = d(Tn, Tnip) < d(@n, Tnt1) + -+ d(@nip-1, Tnip)
(€ + -+ TP d(2o, 1)
L4+ 4+ Hd(zo, x1)

IN

C'n,

= 1= cd(l’o,ﬂh).

En la primera desigualdad, usamos la desigualdad triangular, en la segunda
la cota obtenida en la ecuacion y en la ultima la férmula cerrada
de una suma geométrica, que podemos utilizar en este caso porque estamos
asumiendo que |¢| < 1. Tomando n — oo en la tltima linea, tenemos pro-
ducto de limite nulo por constante, que es nulo. Por tanto, d(xn, Tm) — 0y
concluimos que la sucesién es efectivamente Cauchy y por tanto convergente.
Sea a := lim,_ o T,. Probar que a es punto fijo de f es directo, pues

fa) = f( lim xn)

n—00

= lim f(zn)

n—oo

= lim z,4+1 = a,
n—o0
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donde en la segunda igualdad usamos la continuidad de f. Efectivamente a
es punto fijo de f

Para probar la unicidad, supongamos que b € M también es un punto
fijo de f. Se tiene que

d(a,b) =d(f(a), f(b)) < cd(a,b)) = d(a,b) —cd(a,b) = (1 —c)d(a,b) <O0.

Como (1—c) > 0, debe ser que d(a, b) < 0, pero las métricas son no-negativas,
de lo que d(a,b) = 0. Es decir, a = b. Esto prueba el resultado.

2.2. El teorema de Stone—Weierstrass

Un problema natural es el siguiente. Consideremos X un espacio métrico
compacto, y A un sub-dlgebra de C(X). Probamos que este espacio es cerra-
do, por lo que A C C(X). Asi, podemos preguntarnos bajo qué condiciones
esta contencién es una igualdad. Resulta que basta la hipétesis que A separe
puntos, en el sentido que dados z,y € X, podamos encontrar f € A tal que

f(z) # f(y)-

Teorema 2.2.1 (Stone-Weierstrass). Sea X un espacio nlétrico compacto.
Si A C C(X) una sub-dlgebra que separa puntos, entonces A = C(X).

Expliquemos la idea de la demostracién. Fijada f € C(X), para cada
e > 0 queremos encontrar ¢ € A tal que ||f — ||, < &, de modo que

f € A. Esta ¢ estard dada por el mdzimo puntual de finitas funciones (acé
usaremos la compacidad), cada una dada por una interpolacion adecuada de
f. Procedamos a la prueba.

Lema 2.2.2 (Interpolacién). Bagjo las hipdtesis de Stone—Weierstrass, para
cada a,b € X existe una funcion hqp € A tal que

hap(a) = f(a) y hap(b) = f(b).

Demostracion. Si a = b, basta elegir f. Para a # b, por la hipdtesis que A
separa puntos podemos encontrar ¥ € A tal que ¥(a) # ¥ (b). Asi, podemos
considerar la interpolacién

Y(z) — ¢P(a)
Y(b) — ¥(a)
Es una combinacién R-lineal de elementos de A, por lo que también es miem-

bro de A. Para verificar que satisface la propiedad de interpolacién, basta
con evaluar directamente. O

hap(z) := f(a) +[f(b) — f(a)]

Lema 2.2.3 (Aproximacién). Bajo las hipdtesis de Stone—Weierstrass y fi-
jado x € X, para cada € > 0 existe g € A tal que

9) € (fly) —&, fly) + o),
para todo y € X.

Demostracion. Para cada y € X, sea h,,, Podemos considerar el intervalo
real de radio € alrededor de (f — ha,y)(y) € R, cuyo conjunto preimagen, por
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continuidad, contiene una vecindad (que podemos asumir es una bola By)
en torno a y € X tal que f(z) — hay(2) < €, es decir

f(2) <hay(2) +e

para cada z € B,,.
La coleccién {By: y € X} cubre X, y por la compacidad de X podemos
extraer un subcubrimiento finito By, ..., By, . Asi, la funcién

he(2) == min(haey, (2),. .., hay, (2))

esté bien definida. En el lema siguiente probamos que de hecho h, € A, pero
de momento lo asumimos.

Haremos un argumento anélogo al recién visto, pero con h,. Dado x € X,
como f es continua podemos encontrar una vecindad V, de x de modo que
f(2) < he(2) + € para todo z € V;, o equivalentemente, que

f(z) —e < ha(2).
Todos los V; cubren X, y por compacidad extraemos finitos x1,...,zm € X.

Asi, la funcién
9(2) := méx(he, (2), - - ., ha,, (2))

estd bien definida, y satisface la cota deseada. Estamos prontos a probar que
geA O

Lema 2.2.4 (Pertenencia). Bajo las hipdtesis de Stone—Weierstrass, si f,g €
A, entonces

(f A g)(x) = max(f(z), g(z)), vy (fVg)(z):=min(f(z), g(x))
pertenecen a A.

Demostracion. Partimos recordando que un truco estandar permite probar
que

f+g  If—4l f+g |f—4
Jho="mm iy Yy IVe=TT e T
por lo que el problema esta en verificar que || E Z
Notemos que podemos escribir |f(z)| = v/ f . Por comodidad, norma-
licemos una f € A, de modo que
F(z):= S i €1[0,1]

1 @)%

Esta funcién habita en A, por lo que nos gustarfa tomarle raiz cuadrada
para recuperar el valor absoluto. El problema es que la funcién z — +/z no
necesariamente estd en A.

Lo que si podemos hacer es aproximarla uniformemente por funciones
polinomiales, que ciertamente estdn en A. Los aproximandos se definen re-
cursivamente como

u1( ) =0
Unt1(t) == un(t) + 5[t — un(t)?] para n > 2.
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Se puede probar que la sucesién es (puntualmente) creciente mediante in-

duccidén. Para probar que converge puntualmente a la raiz cuadrada usamos
un poco de manipulacién algebraica. En efecto,

VE = ni1(0)| = [VE = un(t) - %(t —un(t)?)

— V= un(t) — %(\/H un(t)) (VE - un(t))‘

= |(Vi—ua) (1 - %(\/ﬂ un(t))) ‘

y como u,, (t) < v/, el factor en la derecha es siempre positivo. Tomando n —
o0, la Unica forma en que se mantenga la igualdad es que |\/f — Un (t)’ — 0,
que es lo que habiamos afirmado.

Gracias al Teorema de Dini, podemos concluir que u,(t) — v/t unifor-
memente. Por lo argumentado anteriormente, concluimos lo enunciado. [

Asi, el Ejemplomuestra que el espacio Pr([a, b]) satisface las hipSte-
sis del Teorema de Stone—Weierstrass, por lo que deducimos inmediatamente
que las funciones polinomiales de [a, b] son densas en el espacio de funciones
continuas de [a, b], es decir, que toda funcién continua en [a, b] se puede apro-
ximar uniformemente por funciones polinomiales de [a, b]. Este resultado se
generaliza directamente a funciones polinomiales en varias variables.

2.3. El teorema de Arzela—Ascoli

Probamos que un subconjunto en R™ es compacto si y solo posee la
Propiedad de Borel, es decir, si es cerrado y acotado. Este no es el caso en
espacios de funciones continuas, donde de hecho ninguna bola cerrada es
compacta. Veamos el caso de la bola unitaria:

Ejemplo 2.3.1. Consideremos C([a,b]). La bola unitaria cerrada
B[0,1] = {f: [a,b] = R continua: |f||. <1},

es cerrada (pues es una bola cerrada), y acotada. Sin embargo, no es com-
pacta: consideremos la sucesién (fn)nen en B[0,1] dada por

gn(z) = 2"

para cada n € N. Esta sucesién converge puntualmente a la funcién

fa) = {0 z€[0,1)

1 z=1,

que no es continua. En particular, esta sucesion y sus subsucesiones no tienen
limite puntual en B[0, 1], y por tanto no tienen limite uniforme en B[O, 1].
Esto es precisamente no ser compacto.

Por lo tanto nos gustaria desarrollar alguna condicién adicional que im-
poner sobre una familia de funciones continuas para recuperar la equivalencia
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a compacidad a la que ya nos acostumbramos. La respuesta se encuentra en
el concepto de equicontinuidad. Giulio Ascoli probd que efectivamente esta
condicién bastaba en [Asc84], y Cesare Arzela demostré que en verdad dicha
condicién era necesaria en [Arz95|. Intuitivamente, una familia F' de funcio-
nes continuas [a,b] — R serd equicontinua si cada una de las funciones de
F envia puntos suficientemente cercanos de [a, b] a imdgenes uniformemente
cercanas. Formalmente:

Definicién 2.3.2. Un subconjunto E C C([a,b]) se dice (uniformemente)
equicontinuo si dado cualquier € > 0, podemos encontrar § > 0 de modo que
si |z —y| < 6, entonces | f(z) — f(y)| < € para todas las f € E.

Veamos un par de ejemplos de familias equicontinuas.

Ejemplo 2.3.3.

1. Si E C C([a,b]) es formado por funciones lipschitzianas con misma
constante ¢ > 0, entonces es equicontinuo. En efecto, dado € > 0 cada
f € E es tal que si |z — y| < £ entonces |f(x) — f(y)] <e.

2. La sucesién (fn)nen en C'([a, b]) dada por fn(z) := £ es equicontinua:
basta notar que %fn(m) = % < 1, es decir, cada f, tiene derivada
acotada por 1, por lo que cada una es lipschitziana de constante 1. El
ejemplo anterior nos permite concluir que esta sucesién es en efecto
equicontinua.

Ahora, estudiaremos algunos resultados preliminares sobre familias equi-
continuas que nos seran de utilidad para probar el Teorema de Arzela—Ascoli.

Lema 2.3.4. Si una sucesion equicontinua (fn)nen en C([a,b]) converge
puntualmente a f € C([a,b]), entonces el conjunto E := {fn}, .y U{[} es
equicontinuo.

Demostracion. Falta probar la equicontinuidad de f. Usando desigualdad
triangular y ceros convenientes, tenemos para cada n € N que

lf(x) = f)] = |f(x) = fu(x) + fu(z) = f(y)]
< [f(@) = fa(@)] + [fn(z) = F(y)]
< [f(@) = fa(@)] + [fn(x) = fuly) + fuly) — F(W)]
< |f(@) = fa@)] + [ fo(@) = fu()] + 1 fn(y) = F(Y)I.
Por la convergencia puntual, para n suficientemente grande el primer y

dltimo sumando de la expresién anterior son < €, y por la equicontinuidad,
el sumando de en medio es < € cuando |z — y| < §. Asi, concluimos que

|f(z) = f(y)] <3¢

cuando |z —y| < §, y como ¢ era arbitrario esto termina de verificar la
equicontinuidad para f. O

Lema 2.3.5. Si una sucesion equicontinua (fn)nen en C([a,b]) converge
puntualmente en a f € C([a,b]), entonces esta convergencia es uniforme
sobre cada compacto K C [a,b].
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Demostracion. Debemos probar que || f. — f||,, = 0, o equivalentemente,
que dado € > 0 podemos encontrar N € N tal que para todo x € K se tenga
| fn(x) — f(z)| < e. Intentemos un argumento analogo a la demostracién del
Lema anterior. Por desigualdad triangular y ceros convenientes, se tiene que

|fn(x) = f(@)] = |fn(2) = fuly) + fuly) — f(=)]

S [fn(@) = @)+ |fnly) = f(2)]
S fn(@) = @)+ 1fa(y) = F¥) + Fy) = f(2)]
< | fal@) = fo @+ [Fn(y) = FW) + 1 (y) = f(@)]

para cadan € Ny y € K arbitrario. Intentemos estimar esta suma.

Como la sucesién es equicontinua, el Lema[2.3.4 nos permite deducir que
el conjunto E := {f, f1, f2,...} es equicontinuo, y por tanto dado ¢ > 0,
podemos encontrar 6 > 0 tal que el primer y ultimo sumando sean < &
cuando |z — y| < 4.

El problema es que la convergencia puntual no basta para acotar el su-
mando de en medio uniformemente, pues la velocidad de convergencia de-
pendera del punto en cuestiéon. Acé es que la compacidad entra en juego.

Consideremos el § > 0 definido anteriormente por la equicontinuidad.
Por la compacidad, podemos cubrir K con finitas bolas abiertas de radio 9,
digamos

B(y176)7 <. ->B(yk75)7

para y; € K y algin k € N.

Ahora, la convergencia puntual nos dice que para cada j = 1,...,k,
podemos encontrar N(e,y;) € N tal que |fn(y;) — f(y;)| < & cuando n >
N(e,y;). Asi, podemos escoger

N(e) = max {N(ey;)},

y se tendrd que el sumando de en medio efectivamente es < e cuando
n > N(e). Este N(e) solo depende de K y ¢, pero no de z, por lo que
la convergencia es en efecto uniforme.

En particular, tenemos que |fn(z) — f(z)| < 3¢ cuando n > N(g). Como
€ era arbitrario, concluimos lo afirmado. O

Teorema 2.3.6 (Arzela—Ascoli). Un conjunto E C C([a,b]) es compacto si
y solo si es cerrado, acotado, y equicontinuo.

Demostracion. Probemos ambas implicancias.

= : Yasabemos que si E es compacto, entonces debe ser cerrado y acotado,
por lo que resta probar que es equicontinuo. Supongamos que no lo
fuese. Asi, podemos encontrar ¢ > 0 de modo que para todo § > 0,
se tenga que hay z,y € [a,b] vy f € E tales que |x —y| < §, pero
(@) - f)l > =

En particular, para cada 6, := %, habrd f, € E'y Tn,yn € [a,b] ta-
les que |zn, — yn| < &, pero |fn(xn) — fu(yn)| > €. Consideremos la
sucesion (fn)nen. Por la compacidad de E, esta sucesién admite una
subsucesién convergente, y por tanto equicontinua. Pero por construc-
cién, (fn)nen nO es equicontinua y por tanto no tiene subsucesiones
equicontinuas, lo que es contradictorio. Por tanto, debe ser que FE si es
equicontintinuo.
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2.4. PROBLEMA DE MOMENTOS Y EL TEOREMA DE HELLY

Probemos compacidad secuencial. Sea (fn)nen una sucesién en E. El
plan es el siguiente: construir usando fuerza bruta una subsucesién
convergente, primero utilizando el hecho de F es cerrado y acotado
para encontrar una que sirva en los puntos racionales de [a, b], y luego
apoyarnos en la equicontinuidad para extender esta convergencia de
modo uniforme sobre todo [a, b].

En efecto, sea (n)nen una numeracién de los racionales de [a, b]. No-
tamos que para cada ¢ € N, cada sucesién de evaluaciones (fn(2i))nen
es acotada y posee una subsucesién convergente por estar en E. Su-
pongamos que la respectiva subsucesién de cada (fn(z;))nen converge
a a;. Ahora, utilizaremos un argumento diagonal. Sea N1 C N el con-
junto que indexa la subsucesién (fr(x1))nen que converge a ai. Ahora,
podemos considerar la sucesién (fn(z2))nen,, que ain posee una sub-
sucesién convergente a az, supongamos indexada por Na C Nj.

Siguiendo de esta manera para cada ¢ € N, habremos encontrado
una familia numerable de indices N D N;y D N2 D ..., y un punto
a := (a1, az,...). Por el Axioma de Eleccién, existe un N, C N de mo-
do que su j-ésimo elemento sea el j-ésimo elemento de N; (todos los
conjuntos ordenados de forma creciente). Se sigue que cada miembro
de (fn(x:i))nen, converge puntualmente a a;, por lo que la sucesién
(fr)nen converge puntualmente a una f € E sobre racionales.

Ahora, notemos que si probamos que esta convergencia es uniforme en
[a, b], terminamos. Esto es inmediato del Lema [2.3.5] que nos inidca
que la convergencia es uniforme en compactos de [a, ], en particular
sobre el mismo [a, b].

Problema de momentos y el teorema de Helly






Capitulo 3

Algunas aplicaciones

3.1. Convergencia de Gromov—Hausdorff
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CAPITULO 3. ALGUNAS APLICACIONES

3.2. El teorema de Montel



3.3. ECUACIONES INTEGRALES DE FREDHOLM

3.3. Ecuaciones integrales de Fredholm






Capitulo 4

Espacios de Banach

4.1. Transformaciones lineales continuas

Dado un R-espacio normado, en nuestro curso de Algebra Lineal estu-
diamos su estructura de R-espacio vectorial. Ahora, también conocemos que
gracias a su norma, porta una estructura topoldgica. Por tanto, es natural
indagar cémo interactian estas estructuras.

Una de estas interacciones ocurre al nivel de morfismos. En el caso de
los espacios vectoriales, estos corresponden a las transformaciones lineales,
mientras que para espacios topoldgicos son las funciones continuas. Asi, po-
demos estudiar las transformaciones lineales continuas entre dos espacios
normados.

Resulta ser que las tranformaciones lineales continuas son precisamen-
te las acotadas. Dados dos R-espacios normados V, W, podemos definir, en
primera instancia, una transformaciéon R-lineal T: V' — W como acotada si

ITv|| < oo

para cada v € V. Resulta ser conveniente considerar una nocién algo mas
fuerte, pues en tal caso conseguiremos una norma que hace del espacio de
las transformaciones lineales continuas de un espacio de Banch:

Teorema 4.1.1. Dados V,W dos R-espacios de Banach, la funcion

I Tllop = sup_{l|Tlly }
lelly <1

es una norma en el R-espacio vectorial
B(V,W) := {T € LV,W): |T)|,, < oo},

que resulta ser completo respecto a tal norma.

Demostracion. Omitimeros la demostracién de que B(V, W) es un R-espacio
vectorial, y de la norma solo probaremos la desigualdad triangular—el resto
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queda propuesto. Directamente,

1T+ SN, = sup {I(T+ S)zlly }
lllly <1
< sup {|[Txlly, + ISzl }
lllly <1
< sup {||Tzlly}+ sup {[[Szlly}
lllly <1 [llly <1
= HTHop + ||SH0p :

Para probar la completitud, consideremos (7, )nen una sucesién Cauchy
en B(V,W), y notemos que para cada f € V fijo, se tiene que

IT5f = Tifllw < NTo = Tillop £y -

Gracias a la condicién de Cauchy de le hipétesis, esto indica que (T f)nen es
Cauchy en W, que al ser Banach hace de dicha sucesién convergente, digamos
a T'f. Esto define tnicamente una funcién T: V' — W que se verifica como
lineal directamente. Para probar que es acotada, notamos que

ITflly < sup {1 T flly }, e

< Il sup {I T, } < o0,

donde el tltimo supremo es acotado debido a que cualquier sucesién Cauchy
es acotada. Finalmente, falta probar que efectivamente Ty, — T. Para ello,
notamos que

Tef —Tflly = nhlrolo 1T f — Tufllw
< lim [Tk~ Tull, 171y
<ellflly,

donde la ultima desigualdad es cierta para n, k suficientemente grandes, da-
dos por la condicién de Cauchy original. Tomando sup flly<t> concluimos la
convergencia deseada. O

La norma ||-||, se llama norma operador, y por eso usamos el subindice
para distinguirlo de las otras dos normas. Si bien pueden haber tres normas
distintas usdndose al mismo tiempo, es habitual omitir los subindices por
simplicidad notacional. Nosotros acogemos esa costumbre desde ahora, a
menos que sea necesario.

Con esta nocién, tiene sentido hablar de una transformacion acotada
como aquella que es acotada respecto a su norma operador. Asi, podemos
probar el resultado afirmado inicialmente:

Proposicién 4.1.2. Sean V,W dos R-espacios de Banach. Una transfor-
macion lineal T: 'V — W es continua si y solo st es acotada.

Demostracion. Usaremos la caracterizacion de continuidad via sucesiones.
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: Probemos la afirmacién contrareciproca. Supongamos T no acotada,
caso en el que dada una sucesién (fn)nen en V de norma < 1, se
tendrd || T fr|| — co. Asi, se tiene

fn
Y T(

es decir, T' no es continua.

In ) Tfn

) a7

: Supongamos que T es acotado. Sea (fn)nen una suecesién convergente
en V, digamos a f, y probemos que T'f, — T. Directamente,

ITfr =TIl = T (fn = P
<[ fn = fll =0,

lo que verifica lo afirmado.






Bibliografia

[AEP13]

[Arz83]

[Arz95]

[Asc84]

[AU29]

[Bol17]

[Bol30]

[Bor95]

[Couds]

[Dug89)]

[Fré06]

Nicole R. Andre, Susannah M. Engdahl, and Adam E. Parker, An
analysis of the first proofs of the Heine—Borel theorem, Convergence
(2013).

Cesare Arzela, Un’osservazione intorno alle serie di funzioni, Rend.
Dell’ Accad. R. Delle Sci. dell'Istituto di Bologna (1882-1883),
142-159.

, Sulle funzioni di linee, Mem. Accad. Sci. Ist. Bologna CI.
Sci. Fis. Mat. 5 (1895), no. 5, 55-74.

G. Ascoli, Le curve limite di una varieta data di curve, Atti della
R. Accad. Dei Lincei Memorie della Cl. Sci. Fis. Mat. Nat. 18
(1883-1884), no. 3, 521-586.

Pavel Alexandrov and Pavel Urysohn, Mémoire sur les espaces to-
pologiques compacts, Koninklijke Nederlandse Akademie van We-
tenschappen te Amsterdam, Proceedings of the Section of Mathe-
matical Sciences 14 (1929).

Bernard Bolzano, Rein analytischer Beweis des Lehrsatzes, dafs
zwischen je zwey Werthen, die ein entgegengesetztes Resultat
gewdhren, wenigstens eine reelle Wurzel der Gleichung liegt,
Gottlieb Haase, Prague, 1817.

, Functionenlehre, Royal Bohemian Academy of Sciences,
Prague, 1930.

E. Borel, Sur quelques points de la théorie des fonctions, Annales
scientifiques de I'E.N.S. Serie 3 12 (1895), 9-55.

P. Cousin, Sur les fonctions de n variables complezxes, Acta Mathe-
matica 19 (1895), 22.

P. Dugac, Sur la correspondance de Borel et le théoréme de
Dirichlet—Heine—Weierestrass—Borel-Schoenflies—Lebesgue, Archi-
ves internationales d’histoire des sciences 39 (1989), no. 122, 69—
110.

M. Maurice Fréchet, Sur quelques points du calcul fonctionnel, Ren-

diconti del Circolo Matematico di Palermo (1884-1940) 22 (1906),
no. 1, 1-72.

53



BIBLIOGRAFIA

[Kel50]
[Leb04]

[Lim14]
[Ram14]

[RKLO5]

[Sch00]

John L. Kelley, The Tychonoff product theorem implies the Axiom
of Choice, Fundamenta Mathematicae 37 (1950), 75-76.

H. Lebesgue, Lecons sur l’intégration et la recherche des fonctions
primitives, Paris, 1904.

Elon Lages Lima, Espacos métricos, IMPA, 2014.

Manya Raman-Sundstrom, A pedagogical history of compactness,
arXiv:1006.4131 [math] (2014), arXiv: 1006.4131.

P. Rusnock and A. Kerr-Lawson, Bolzano and uniform continuity,
Historia Mathematica 32 (2005), 303—-311.

A. Schoenflies, Die FEntwickelung der Lehre wvon den Punkt-
mannigfaltigkeiten, Jahresbericht der deutschen Mathematiker-
Vereinigung, B.G. Teubner, Leipzig, 1900.



	Índice general
	Espacios métricos y su topología
	Definición y ejemplos
	Sucesiones y límites
	Vecindades métricas
	Isometrías
	Funciones continuas
	Espacios métricos compactos
	Completitud
	Conexidad
	Continuidad uniforme

	El espacio de las funciones continuas sobre un compacto
	Métodos de aproximaciones sucesivas
	El teorema de Stone–Weierstrass
	El teorema de Arzelà–Ascoli
	Problema de momentos y el teorema de Helly

	Algunas aplicaciones
	Convergencia de Gromov–Hausdorff
	El teorema de Montel
	Ecuaciones integrales de Fredholm

	Espacios de Banach
	Transformaciones lineales continuas

	Bibliografía

