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Prefacio

Este texto comenzó como apuntes personales del curso de Análisis Real
impartido por el profesor Duván Henao en la Pontificia Universidad Católica
de Chile en primavera de 2021. Posteriormente, decid́ı completar lo que hab́ıa
escrito hasta cubrir, más menos, todo el contenido que se ve usualmente en
nuestro curso de pregrado, apoyándome fuertemente en el maravilloso libro
de Elon Lages Lima, Espaços Métricos( [Lim14]).

Este curso es fundamental para cualquier estudiante de matemática. Mi
idea es que estas notas sirvan de introducción al área, y como base sólida
para el estudio posterior de, por ejemplo, Análisis Complejo, Ecuaciones
Diferenciales, Teoŕıa de Integración, Análisis Funcional, y Teoŕıa Espectral.

Es pertinente comentar sobre la desición de contenidos que he hecho. He
optado, generalmente, por un enfoque minimalista, pero sin escatimar en
recursos pedagógicos. El motivo es que, al haber ya pasado por los cursos
mencionados anteriormente, he notado dos posibles sitios en los que opti-
mizar recursos. Por un lado existe solapamiento no-trivial entre lo visto en
cada curso, y por otro, se suelen estudiar teoŕıa y resultados que no son
particularmente útiles sino solo cuando están en algún contexto particular.

Por ejemplo, podŕıamos discutir axiomas de separabilidad y contabilidad,
pero el caso de espacios métricos resulta no ser de interés particular. El in-
terés viene al querer estudiar espacios vectoriales topológicos no-metrizables,
que ocurren naturalmente en áreas más especializadas. Otro ejemplo es el
Teorema de Hanh–Banach, o el Teorema de Baire que si bien es muy impor-
tante, no tiene mayores aplicaciones hasta el estudio operadores lineales y
dualidad.

Aśı, he decidido cubrir el contenido que es útil para el resto de cursos,
pero he omitido el que se debeŕıa estudiar con lujo de detalle en esos mismo
cursos.

Está de más decir que debo haber cometido muchos errores, tanto en la
matemática como en la exposición—de los cuales no me hago responsable.
Espero que a medida que sean encontrados me los puedan comunicar a mi
correo benjaquezadam@uc.cl para corregirlos.
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Introducción

Este es un curso introductorio de Análisis Matemático. El germen del
Análisis moderno se puede rastrear a la memoria de Maurice Fréchet de
1906, titulada Sur quelques points du Calcul Fonctionnel (en [Fré06]). En
ella, apunta a unificar el estudio de diversas clases de funciones (por ejemplo,
continuas, diferenciables, etc.) en una única teoŕıa robusta, en la que las
funciones—no sus valores—sean los elementos de algún conjunto con alguna
estructura adicional que permita hablar de los objetos usuales asociados a
un conjunto puntual (i.e, formado por números): puntos ĺımites, adherencia,
clausura, interior, etc.

Fréchet reconoce el concepto de función moderno ([Fré06, p. 1]), y apun-
ta a unificar las teoŕıas de espacios no solo de funciones reales/complejas,
sino que también de funciones de sucesiones, o de funciones de otras funcio-
nes (como los operadores lineales en espacios vectoriales de funciones). Su
método es adoptar un punto de vista totalmente general que abarque todas
las familias de funciones mencionadas, y permita revelar sus propiedades en
común.

En [Fré06, §§I.4–6], el autor presenta la observación clave que, en un
conjunto cualquiera, se puede recuperar la teoŕıa de conjuntos puntuales
siempre que dicho conjunto tenga una noción razonable de ĺımite. Fréchet
describe axiomáticamente el concepto de “conjuntos con ĺımite”—que llama
sugerentemente de clase (L)—en [Fré06, §I.7], indicando que en un conjunto
E formado por elementos de naturaleza cualquiera, la noción de ĺımite debe
satisfacer que:

1. Siempre podemos distinguir si una sucesión (infinita) tiene ĺımite o no.

2. Si en una sucesión (An)n∈N cada término es igual a un elemento A ∈ E,
el ĺımite de dicha sucesión ha de ser A.

3. Si una sucesión (An)n∈N converge a A ∈ E, entonces cualqueir subsu-
cesión (Ank )k∈N debe tener como ĺımite a A.
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Caṕıtulo 1

Espacios métricos y su topoloǵıa

1.1. Definición y ejemplos

Un espacio métrico es un conjunto equipado con una noción de distancia
entre dos puntos. La definición contemporánea es la que Fréchet dio origi-
nalmente en [Fré06, §49, p. 30]:

Definición 1.1.1. Una métrica o distancia en un conjuntoM es una función
d : M ×M → R≥0 tal que para todos x, y, z ∈M cumple:

1. Coincidencia: d(x, y) = 0 ⇐⇒ x = y.

2. Desigualdad triangular: d(x, z) ≤ d(x, y) + d(y, z).

El número d(x, y) se llama distancia entre x e y, y el par (M,d) se llama un
espacio métrico.

Ejercicio. La literatura suele incluir la propiedad de simetŕıa que d(x, y) = d(y, x) en
la lista de axiomas. Esto en realidad no es necesario: verifique de nuestra definición de
distancia se deduce la simetŕıa de d. También, hemos definido una distancia como no-
negativa, pero esto igual es redundante: verifique que si d : R → R satisface coincidencia
y desigualdad triangular, entonces toma valores no-negativos.

Ejemplo 1.1.2. El prototipo de espacio métrico es (Rn, d), donde

d(x, y) :=

√√√√ n∑
i=1

(xi − yi)2,

la métrica euclidiana. Claramente es una función no-negativa, porque es ráız
cuadrada de un número no-negativo. La coincidencia viene del hecho de que
una suma de números no-negativos puede ser 0 exclusivamente en el caso
que cada sumando sea 0. La desigualdad triangular es no-trivial, y se deduce
de la desigualdad de Cauchy–Schwarz, que debeŕıa sonar familiar del curso

de Álgebra Lineal.

Ejemplo 1.1.3. En cualquier conjunto M se puede definir la función

d(x, y) :=

{
0 si x = y,

1 otro caso.
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Esta función define una métrica en M , lo que se puede verificar por fuerza
bruta. Esta métrica se llama métrica cero-uno o métrica discreta. Es útil
para producir contraejemplos.

Ejercicio. Verifique que la métrica discreta es efectivamente una métrica.

Ejemplo 1.1.4. Sea (M,d) un espacio métrico. Cualquier subconjunto S ⊆
M puede ser realizado como un espacio métrico considerando la restricción
de d a S, en otras palabras, (S, d|S×S) es un espacio métrico: las tres condi-
ciones de la Definición 1.1.1 se cumplen para todos x, y, z ∈ M , por lo que
en particular se cumplen para todos x, y, z ∈ S. Este espacio se llama un
subespacio métrico de M , y d|S×S se llama la métrica subespacio inducida
por (M,d).

Ejemplo 1.1.5. Un R-espacio vectorial es un grupo abeliano (V,+) equi-
pado con una acción compatible del anillo R. Todo producto interior 〈·, ·〉 en
V induce una norma ‖·‖ en V a través de

‖v‖ :=
√
〈v, v〉,

la que a su vez induce una métrica en V a través de

d(v, w) := ‖v − w‖ .

Nota pedagógica. Dependiendo de la formación previa de las estudiantes del curso, el
lenguaje usado en el ejemplo anterior puede ser nuevo, tanto por la precisión de los obje-
tos algeraicos como por las menciones de productos interiores y normas. Estos conceptos
se estudiarán con profundidad en el curso de Análisis Funcional, pero de todos modos
es razonable definirlos ahora en la cátedra para tener el lenguaje de espacios normados
a nuestra disposición—particularmente porque las estudiantes de Matemática lo tienen
desde el curso de Álgebra Lineal.

Los espacios de interés que vamos a querer analizar son los espacios eucli-
dianos de dimensión finita Rn, los espacios de sucesiones RN, y los espacios de
funciones acotadas B(X), donde X es (de momento) un conjunto cualquie-
ra. Hay dos formas estándar de definir normas/métricas en estos espacios:
tomando algún máximo, o tomando alguna p-suma. En los siguentes dos
ejemplos desarrolaremos estas ideas de forma concreta.

Ejemplo 1.1.6 (Normas-∞). En Rn, se puede definir la función

‖(x1, . . . , xn)‖∞ := máx
j=1,...,n

|xj |.

También, si del conjunto de todas las sucesiones (reales) RN consideramos
solo aquellas acotadas (colección que se denota `∞), se puede definir la fun-
ción

‖(xj)j∈N‖∞ := sup
j∈N
|xj |.

Dado X un conjunto cualquiera, al considerar colección de funciones X → R
acotadas, denotada B(X), se puede definir la función

‖f‖∞ := sup
x∈X
|f(x)|.



1.1. Definición y ejemplos

Estas tres funciones definen normas en sus espacios respectivos. Verifi-
quemos la desigualdad triangular para (B(X), ‖·‖∞). En efecto, para todas
f, g, h ∈ B(X), se tiene que

|f(x)− g(x)| = |f(x)− h(x) + h(x)− g(x)|
≤ |f(x)− h(x)|+ |h(x)− g(x)|,

para todo x ∈ X, donde usamos la desigualdad triangular para el valor
absoluto usual. Tomando supremos,

sup
x∈X
|f(x)− g(x)| ≤ sup

x∈X
|f(x)− h(x)|+ sup

x∈X
|h(x)− g(x)|,

lo que podemos hacer gracias a la hipótesis de que las funciones son acotadas.
Para tener una idea concreta, xn : [0, 1] → R es un miembro de B([0, 1])

pues es es continua de dominio cerrado y acotado, por lo que aplica el Teo-
rema del Valor Extremo que indica que es acotada. En particular,∥∥x2∥∥∞ = sup

x∈[0,1]

∣∣x2∣∣ = 1.

Observación. De la desigualdad triangular de (B(X), ‖·‖∞) se deducen las
dos anteriores, al considerar los vectores en Rn como funciones {1, . . . , n} →
R (cada una acotada porque alcanza finitos valores), y las elementos de `∞

como funciones N→ R acotadas.

Ejemplo 1.1.7 (Normas-p). Otra familia de normas en los espacios del
Ejemplo 1.1.6 son las normas-p, con p ∈ [1,∞). En Rn, podemos considerar
la función

‖(x1, . . . , xn)‖p :=

(
n∑
j=1

|xj |p
)1/p

,

y análogamente en RN la función

‖(xj)j∈N‖p :=

(
∞∑
j=1

|xj |p
)1/p

.

También en C([a, b]), podemos definir la función

‖f‖p :=

(∫ b

a

|f(x)|pdx
)1/p.

Considerando los subconjuntos donde estas sumas e integral convergen, que
se escriben `p y Lp respectivamente, obtenemos efectivamente normas. Es
claro que dichas funciones son no-negativas y satisfacen coincidencia. El des-
af́ıo está en probar la desigualdad triangular, que en el caso de ‖·‖p tiene un
nombre especial: la desigualdad de Minkowski. La demostración es no-trivial
y será omitida.

Un elemento concreto en `∞ es en := (ek)k∈N donde

ek :=

{
0 si k 6= n

1 si k = n
.

Es acotada por 1, y de hecho ‖en‖∞ = 1.
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Ejercicio. Con la notación del ejemplo anterior, calcule la distancia entre ek y ej (para
j 6= k).

Ejemplo 1.1.8. En virtud del Ejemplo 1.1.4, podemos considerar subespa-
cios lineales de espacios normados, que seguirán siendo espacios normados.
Por ejemplo, el conjunto C([a, b]) es subespacio de B([a, b]) gracias al Teore-
ma del Valor Extremo, y por tanto hereda su norma-supremo. Ejemplos de
subespacios de `∞ son el espacio c de las sucesiones convergentes, o c0 de las
sucesiones convergentes a 0

Ejercicio. Verifique que los afirmados subespacios de sus espacios respectivos, efectiva-
mente lo son. ¿Cuál es la jerarqúıa de contenciones de los (sub)espacios de sucesiones?

A continuación, estudiaremos algunos ejemplos algo más exóticos.

Ejemplo 1.1.9. Números p-ádicos.

Ejemplo 1.1.10. En R, la función

d?(x, y) := |tanhx− tanh y|,

donde usamos la función tangente hiperbólica definida por

tanhx :=
ex − e−x

ex + e−x
,

es una métrica. Es un ejemplo de una métrica que no viene de una norma, y
que de hecho es escencialmente distinta (idea que formalizaremos posterior-
mente) a la métrica usual.

Ejemplo 1.1.11. En RN, la función

d(x, y) :=

∞∑
j=1

|xj − yj |
2j(1 + |xj − yj |)

define una métrica. Nuevamente, esta métrica no proviene de ninguna norma.

1.2. Sucesiones y ĺımites

A continuación, desarrollamos el programa descrito por Fréchet que he-
mos discutido. A saber, definiremos qué es una sucesión, sus ĺımites, y pro-
baremos algunas propiedades elementales. Estudiar sucesiones en espacios
métricos es la generalización natural de estudiarlas en Rn, y, como es de
esperar, muchas de las definiciones y propiedades se traducen sin problemas
a espacios métricos.

Definición 1.2.1. Una sucesión en un espacio métrico M es una lista nu-
merable (xn)n∈N := (x1, x2, . . . ) de elementos de M , es decir, una función
x : N→M . El n-ésimo término de esta sucesión se denota como xn := x(n).
Una subsucesión de (xn)n∈N es una restricción de x a un subconjunto in-
finito de N, vale decir, si {nk}k∈N ⊆ N, la subsucesión correspondiente es
(xnk )k∈N. Decimos que una sucesión (xn)n∈N en M es acotada si la distancia
entre cualesquiera dos términos de dicha sucesión es acotada por algún r > 0
uniforme.
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Ejercicio. Verifique que las sucesiones que toman una cantidad finita de valores son
todas acotadas.

La definición ε-δ de ĺımite es la misma de cálculo:

Definición 1.2.2. Sea M un espacio métrico, y sea (xn)n∈N una sucesión
en M . Decimos que el ĺımite de (xn)n∈N es igual a a si dado ε > 0, podemos
encontrar un N ∈ N tal que para todo n > N , se tenga que d(xn, a) < ε. En
tal caso, denotamos ĺımn∈N xn := a. También se dice que (xn)n∈N tiende a
a, o que (xn)n∈N converge a a, y se escribe xn → a. Si el ĺımite en cuestión
no existe, decimos que la sucesión diverge.

Ejercicio. Escriba expĺıcitamente la negación lógica de la definición de convergencia.
Pruebe que en cualquier espacio métrico con al menos dos elementos (con cualquier
métrica) siempre hay alguna sucesión divergente.

Para tener ideas concretas, iremos estudiando los conceptos que aparez-
can a través de tres ejemplos recurrentes, uno en cada espacio de interés.

Ejemplo 1.2.3. La sucesión (xn)n∈N en R dada por xn := 1/n para todo
n ∈ N converge a 0: en efecto, dado ε > 0, tomemos N > 1

ε
(lo que se puede

hacer gracias a la Propiedad Arquimediana). De acá, se sigue que

n > N ⇐⇒ 1

n
<

1

N
⇐⇒ 1

n
< ε =⇒

∣∣∣∣ 1n − 0

∣∣∣∣ < ε.

Ejercicio. Dé algún ejemplo de una sucesión divergente en R y una en Rn, n > 1.

Proposición 1.2.4. En todo espacio métrico M , las sucesiones constantes
convergen a dicha constante.

Demostración. Sea (xn)n∈N una sucesión constante en M , es decir, tal que
xn = a ∈ M para todo n ∈ N. Esta sucesión converge a a: en efecto, dado
ε > 0, podemos tomar cualquier N ∈ N, pues como xn = a siempre, en
particular cuando n > N se tendrá que d(xn, a) = d(a, a) = 0 < ε.

Proposición 1.2.5. Si una sucesión (xn)n∈N en un espacio métrico M es
convergente, entonces es acotada.

Demostración. Sea (xn)n∈N como en el enunciado. Supongamos que xn →
a ∈ M . Para ε = 1, se tiene que existe N ∈ N tal que si n > N , entonces
xn ∈ B(a, 1). Por lo tanto, los términos de la sucesión están contenidos en
el conjunto {x1, . . . , xN} ∪B(a, 1). Como ambos conjuntos son acotados, se
sigue que su unión también es acotada.

Observación. El contrarrećıproco de 1.2.5 nos dice que si una sucesión no es
acotada, entonces es divergente. Por ejemplo, la sucesión (xn)n∈N dada por
xn := n para todo n ∈ N no es acotada, y por tanto es divergente.

Lema 1.2.6. Si una sucesión (xn)n∈N en un espacio métrico M es conver-
gente, entonces su ĺımite es único.

Demostración. Sea (xn)n∈N como en el enunciado. Supongamos que xn →
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a ∈M y que xn → b ∈M . Esto es, por definición, que dado ε > 0, podemos
encontrar N1, N2 ∈ N tal que si n > N1 entonces d(xn, a) < ε, y si n > N2

entonces d(xn, b) < ε. Consideremos N > máx {N1, N2}. Por tanto, si n >
N , se sigue, por desigualdad triangular, que d(a, b) ≤ d(a, xn)+d(xn, b) < 2ε.
Como ε era arbitrario, se tiene que d(a, b) = 0, y por tanto a = b.

Lema 1.2.7. Si una sucesión (xn)n∈N en un espacio métrico M es conver-
gente, entonces todas sus subsucesiones convergen al ĺımite de (xn)n∈N.

Demostración. Sea (xn)n∈N como en el enunciado, y supongamos que xn →
a ∈M . Por definición, esto es que dado ε > 0, existe N ∈ N tal que si n > N ,
entonces d(xn, a) < ε. Por otro lado, también existe K ∈ N tal que nK > N ,
pues n1 < n2 < . . . Por tanto, se sigue que si k > K, entonces nk > N , y
por tanto d(xnk , a) < ε. Esto es, xnk → a.

Observación. El contrarrećıproco de 1.2.7 nos dice que si una sucesión tiene
al menos un par de subsucesiones que convergen a ĺımites distintos, entonces
esta diverge. Por ejemplo, la sucesión (xn)n∈N en R dada por xn := (−1)n

tiene las subsucesiones (x2i)i∈N (que es constantemente 1) y (x(2j−1))j∈N
(que es constantemente −1). Estas convergen a 1 y a −1 respectivamente, y
como 1 6= −1, se sigue que (xn)n∈N es divergente.

Podemos dar una otra caracterización—muy útil—de función continua:
una función será métricamente continua (y por tanto topológicamente con-
tinua) si y solo si es secuencialmente continua:

Proposición 1.2.8. Sean M,N espacios métricos. Una función f : M → N
es continua en a ∈M si y solo si preserva ĺımites secuenciales, es decir, que
si xn → a, entonces f(xn)→ f(a).

Demostración. Probemos ambas implicancias:

=⇒ : Si f es continua en a, dado ε > 0, podemos encontrar δ > 0 de modo
que si d(x, a) < δ, entonces d(f(x), f(a)) < ε. Sea N ∈ N menor a δ.
Por tanto, para todo n > N se tendrá que d(xn, a) < N < δ, y por
tanto d(f(xn), f(a)) < ε, es decir, efectivamente f(xn)→ f(a).

⇐= : Supongamos que f(xn) → f(a) para cualquier sucesión que converja
a a. Buscando una contradicción, supongamos que f no es continua
en a. Por tanto, existe al menos un ε > 0 de modo que para cualquier
distancia δ > 0, en particular para cada δn := 1

n
, existe xn ∈M tal que

d(xn, a) < 1
n

, pero d(f(xn), f(a)) ≥ ε. Es decir, hemos encontrado una
secuencia que converge a a, pero la sucesión de imágenes no converge
a f(a), lo que contradice nuestra hipótesis.

También, hay una caracterización de clausura en términos de sucesiones:

Proposición 1.2.9. Sean M un espacio métrico, a ∈M y X ⊆M . Se tiene
que a ∈ X si y solo si a es el ĺımite de alguna sucesión en X.

Demostración. Adoptemos la notación del enunciado.

=⇒ : Si a ∈ X, entonces para cualquier distancia r > 0, se tiene que B(a, r)
tiene puntos de X. Por tanto, para cada n ∈ N, consideremos algún
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xn ∈ B(a, 1
n

). La sucesión (xn)n∈N es formada únicamente por elemen-
tos de X, y por construcción converge a a.

⇐= : Si xn → a es una sucesión en X, por convergencia se tiene que toda
bola abierta centrada en a contiene puntos de la sucesión, es decir, que
a ∈ X.

Ejemplo 1.2.10.

1. Notemos que ∂X = X ∩M −X, por lo que los puntos en la frontera
de X son precisamente los puntos que son ĺımites de sucesiones en X
y M −X al mismo tiempo.

2. Un subconjunto X ⊆ M es denso en M si y solo si X = M , es decir,
si M es el conjunto de todos los ĺımites de sucesiones en X.

3. Un conjunto F es cerrado en M si y solo si F = F , es decir, que el
mismo F es el conjunto de todos los ĺımites de sucesiones en F .

1.3. Vecindades métricas

Dado un conjunto X, una topoloǵıa en X es una colección de subconjun-
tos τ de X que contenga a ∅, X, que sea cerrada bajo uniones arbitrarias, y
bajo intersecciones finitas. Cada elemento de τ se llama un conjunto abierto,
y el par (X, τ) se llama un espacio topológico.

En esta sección vamos a abstraer los conceptos fundamentales de R a
espacios métricos. Debemos partir definiendo una topoloǵıa, es decir, declarar
qué es un abierto en un espacio métrico. Para esto, vamos a apoyarnos en un
tipo de conjunto más sencillo: las bolas. Estas nos van a permitir identificar
cuándo un punto está “dentro” topológicamente de un conjunto. Un abierto
será un conjunto que solo tiene “interior”.

Definición 1.3.1. Sea M un espacio métrico y a ∈ M . Dado r > 0, de-
finimos la bola abierta de centro a y radio r como el conjunto de pun-
tos de M que están a una distancia menor que r de a, léase, B(a, r) :=
{x ∈M : d(x, a) < r}.

Ejemplo 1.3.2.

1. Sea M un espacio métrico con la métrica cero-uno. Por definición, en
este espacio cualquier par de puntos están a distancia menor o igual a
1, por lo que para todo a ∈M se tiene que

B(a, r) =

{
M si r > 1,

{a} si r ≤ 1.

2. En R con la métrica usual se tiene que

B(a, r) = {x ∈ R : |x− a| < r}
= {x ∈ R : − r < x− a < r}
= {x ∈ R : a− r < x < a+ r}
= (a− r, a+ r).
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Definición 1.3.3. Sea M un espacio métrico, y X ⊆ M . Decimos que un
a ∈ X es un punto interior de X si es centro de una bola abierta en X, es
decir, si existe r > 0 tal que B(a, r) ⊆ X. El conjunto de todos los puntos
interiores a X en M se llama interior de X en M , y se denota como intX.
Decimos que A ⊆ M es un conjunto abierto en M si todos sus puntos son
interiores, es decir, si A = intA.

Ejemplo 1.3.4.

1. Recordemos que cualquier intervalo abierto centrado en un número
racional contiene números irracionales. Por tanto, el interior de Q en
R es vaćıo. Es decir, Q no es un abierto de R.

2. Sea M un espacio métrico. Toda bola abierta en M es un conjunto
abierto: sea B(a, r) una bola abierta centrada en a ∈ M de radio
r > 0.

Debemos probar que para cada x ∈ B(a, r), podemos encontrar un
radio s > 0 de modo que B(x, s) ⊆ B(a, r).

Consideremos s := r − d(a, x) > 0. Por definición, si y ∈ B(x, s),
entonces d(x, y) < s. Por tanto, por desigualdad triangular, notamos
que

d(a, y) ≤ d(a, x) + d(x, y) < d(a, x) + s = r,

es decir, y ∈ B(a, r), por lo que B(x, s) ⊆ B(a, r).

3. Sea M un espacio métrico. El mismo M es abierto en M , pues todas
las bolas centradas en a ∈M están contenidas en M . También ∅ ⊆M
es abierto en M por vacuidad.

4. Sea M un espacio métrico, y F := {a1 . . . , an} ⊆ M un subconjunto
finito de M . Se tiene que M −F es abierto en M : en efecto, para cada
x ∈M − F podemos considerar

r := mı́n
i=1,...,n

{d(x, ai)}.

Se sigue que B(x, r) es una bola abierta que por construcción no con-
tiene a ninguno de los ai, es decir, que B(x, r) ⊆ M − F . Esto es
precisamente que M − F es abierto en M .

5. Todo intervalo real abierto acotado (a, b) es abierto en R pues es la
bola abierta de centro b+a

2
y radio b−a

2
.

Como mencionamos antes, los abiertos métricos son una topoloǵıa:

Proposición 1.3.5. Sea M espacio métrico. La colección τ := {A ⊆M abierto}
define una topoloǵıa en M , es decir, se tiene que:

1. M, ∅ ∈ τ .

2. Si A1, . . . , An ∈ τ , entonces
⋂n
i=1Ai ∈ τ .

3. Sea L es un conjunto de ı́ndices. Entonces si Aλ ∈ τ para todo λ ∈ L,
entonces

⋃
λ∈LAλ ∈ τ .

Demostración. Probemos que se satisfacen los axiomas de topoloǵıa.
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1. Esto fue probado en el Ejemplo 1.3.4(3).

2. Sean A1, . . . , An ∈ τ , y sea a ∈
⋂n
i=1Ai, es decir a ∈ Ai para cada

i = 1, . . . , n. Como cada uno de estos conjuntos es abierto, existe ri > 0
tal que B(a, ri) ⊆ Ai. Consideremos

r := mı́n
i=1,...,n

{ri}.

Por tanto, se tiene que B(a, r) ⊆ B(a, ri) ⊆ Ai para cada i = 1, . . . , n.
Esto es precisamente que B(a, r) ⊆

⋂n
i=1Ai, es decir,

⋂n
i=1Ai es efec-

tivamente abierto en M .

3. Sean L y cada Aλ como en el enunciado. Sea a ∈
⋃
λ∈LAλ. Se sigue que

existe algún λ ∈ L tal que Aλ es abierto en M , es decir, que existe un
rλ > 0 de modo que B(a, rλ) ⊆ Aλ ⊆

⋃
λ∈LAλ. Por tanto, el conjunto

en cuestión es efectivamente abierto en M .

Observación. Una intersección arbitraria de conjuntos abiertos no es nece-
sariamente un conjunto abierto: un singleton {a} ⊆M puede ser abierto en
M solo en el caso que sea aislado, en el sentido que sea una bola métrica.
Este es el caso, por ejemplo, de métrica cero-uno, en la que todo punto es
aislado.

Podemos caracterizar a los abiertos métricos como aquellos conjuntos
que son uniones de bolas abiertas. En lenguaje topológico, esto dice que las
bolas abiertas son una base de la topoloǵıa:

Proposición 1.3.6. Sea M un espacio métrico. Un subconjunto A ⊆M es
abierto en M si y solo si A es una unión de bolas abiertas.

Demostración. Sea M un espacio métrico. Probemos ambas implicancias.

⇐= : Si A ⊆ M es una unión de bolas abiertas en M , entonces A es unión
de abiertos en M , y por tanto un conjunto abierto de M .

=⇒ : Sea A ⊆M abierto en M , por lo que para cada x ∈ A, podemos encon-
trar rx > 0 tal que B(x, r) ⊆ A. Aśı, se tiene que {x} ⊆ B(x, rx) ⊆ A.
Tomando unión sobre cada x ∈ A, se tiene que

A =
⋃
x∈A

{x} ⊆
⋃
x∈A

B(x, rx) ⊆ A,

y por tanto A =
⋃
x∈AB(x, rx), lo que prueba lo enunciado.

Observación. En lenguaje de bolas, la definición de covergencia es equiva-
lente a que para todo radio ε > 0, existe un N ∈ N tal que xn ∈ B(a, ε) para
todo n > N . La definición de divergencia en lenguaje de bolas es que existe
algún radio ε > 0 tal que para todo N ∈ N, podemos encontrar n > N de
modo que xn 6∈ B(a, ε).

1.4. Isometŕıas

Las funciones entre espacios métricos que preservan distancia reciben
atención especial:
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Definición 1.4.1. Sean (M,d) y (N, ρ) espacios métricos. Diremos que una
función f : M → N es una inmersión isométrica o que preserva distancias
si la distancia entre dos puntos es la misma que entre sus imágenes bajo f ,
es decir, si d(x, y) = ρ(f(x), f(y)) para todos x, y ∈M .

Se puede demostrar fácilmente que las inmersiones isométricas son siem-
pre inyectivas:

Proposición 1.4.2. Toda inmersión isométrica entre espacios étricos f : M →
N es inyectiva.

Demostración. Esto es una cuenta directa: dados x, y ∈M , se tiene que

f(x) = f(y) =⇒ d(f(x), f(y)) = d(x, y) = 0

=⇒ x = y.

Por tanto, una inmersión isométrica sobreyectiva es automáticamente
biyectiva, y por ende invertible. Estas reciben otro nombre:

Definición 1.4.3. Una isometŕıa entre dos espacios métricos M,N es una
inmersión isométrica invertible f : M → N .

De estar bien definidas, la composición de inmersiones, y la inversa de
una inmersión, son inmersiones:

Proposición 1.4.4. Sean (M,d), (N, ρ), (O, σ) espacios métricos. Dadas
isometŕıas f : M → N y g : N → O, entonces g ◦ f y f−1 también son
isometŕıas.

Demostración. Veamos la composición. En primer lugar, g ◦ f es inmersión
isométrica pues dados x, y ∈M , se tiene que

d(x, y) = ρ(f(x), f(y))

= σ(g(f(x)), g(f(y)))

= σ([g ◦ f ](x), [g ◦ f ](y)).

La inversa de g ◦ f es claramente f−1 ◦ g−1. Esto verifica que la composición
de isometŕıas es isometŕıa.

Probar que f−1 es una isometŕıa N →M es directo. En efecto, si x, y ∈
N , se tiene que

ρ(x, y) = ρ(idN (x), idN (y))

= ρ(f(f−1(x)), f(f1(y)))

= d(f−1(x), f−1(y)),

lo que verifica que f−1 es inmersión isométrica. Su inversa es f , por hipótesis.

Hay veces que vamos a querer estudiar un conjunto X de interés, pero
puede no tener una métrica equipada. El nombre de inmersión viene de que
si tenemos una función inyectiva a un espacio métrico f : X → M , vamos a
poder inmergir X en M de forma canónica:
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Proposición 1.4.5. Sea X un conjunto, y (M,d) un espacio métrico. Dada
una función inyectiva f : X →M , se tiene que la función

d′(x, y) := d(f(x), f(y))

define una métrica en X, que hace de f una inmersión isométrica.

Demostración. Es claro que d′ satisface la no-negatividad, simetŕıa, y des-
igualdad de triangular, pues es heredada de d. La única parte no trivial es
la coincidencia. Dados x, y ∈ X, se tiene que

d′(x, y) ⇐⇒ d(f(x), f(y)) = 0

⇐⇒ f(x) = f(y)

⇐⇒ x = y,

donde la última equivalencia usa la inyectividad de f . El que f sea inmersión
isométrica es por construcción.

Ejemplo 1.4.6. Podemos inmergir isométricamente R en Rn (con cualquier
norma) del siguiente modo: sean a, u ∈ Rn, con u unitario (ie., ‖u‖ = 1), y
consideremos la función

f : R −→ Rn

t 7−→ a+ tu.

Esta es una inmersión isométrica, pues

d(f(s), f(t)) = ‖f(s)− f(t)‖
= ‖a+ su− a− tu‖
= ‖(s− t)u‖
= ‖s− t‖
= d(s, t).

Ejemplo 1.4.7. Intuitivamente, Rn debe ser isométrico consigo mismo. Es-
to puede probarse de distintas formas. Por ejemplo, dado a ∈ Rn, la función
de traslación por a definida por ga(x) := x + a es una isometŕıa: dados
x, y ∈ Rn se tiene que

d(ga(x), ga(y)) = ‖x+ a− y − a‖
= ‖x− y‖
= d(x, y),

y su inversa es claramente la función y 7→ y− a. Por otro lado, la función de
reflexión dada por h(x) := −x es otra isometŕıa: dados x, y ∈ Rn, se tiene
que

d(h(x), h(y)) = d(−x,−y)

= ‖−x+ y‖
= d(y, x)

= d(x, y)
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1.5. Funciones continuas

Las funciones continuas de Cálculo son aquellas que env́ıan vecindades de
un punto, a vecindades de la imagen del punto. La definición para espacios
métricos es la misma, intercambiando el valor absoluto por la distancia:

Definición 1.5.1. Sean (M,d) y (N, ρ) espacios métricos. Decimos que una
función f : M → N es continua en el punto a ∈ M si dado ε > 0, existe
un δ > 0 tal que cada vez que d(x, a) < δ, se tenga que ρ(f(x), f(a)) < ε.
Decimos que f continua si lo es en todos los puntos de M .

Observación. En lenguaje de bolas, f : M → N es continua en a ∈ M si y
solo si dada cualquier bola BN := B(f(a), ε), existe una bola BM := (a, δ)
de modo que f(BM ) ⊆ BN .

Lema 1.5.2. La composición de funciones continuas es continua.

Demostración. Sean (M,d), (N, ρ), (O, σ) espacios métricos, y sean f : M →
N y g : N → P continuas. Dados ε, ξ > 0, la continuidad de g indica que hay
un δ2 > 0 tal que si ρ(z, w) < δ2, entonces σ(g(z), g(w)) < ε. Por otro lado, la
continuidad de f nos permite encontrar δ1 > 0 de modo que si d(x, a) < δ1,
entonces ρ(f(x), f(a)) < ξ. En particular, si ξ := δ2, va a existir δ > 0 tal
que si d(x, a) < δ, entonces ρ(f(x), f(a)) < δ2, y en este caso se tendrá que
σ((g ◦ f)(x), (g ◦ f)(a)) < ε.

Podemos dar una caracterización topológica (ie., que no dependa de la
métrica) de continuidad: una función será métricamente continua (nuestra
definición) si y solo si es topológicamente continua (ie., tal que el conjunto
preimagen de un conjunto abierto, sea abierto):

Proposición 1.5.3. Sean M,N espacios métricos. Una función f : M → N
es continua si y solo si la preimagen f−1(A) ⊆M de cualquier abierto A ⊆ N
de N , es un abierto de M .

Demostración. Sean M,N espacios métricos. Probemos ambas implicancias.

=⇒ : Supongamos que f : M → N es una función continua. Sea A ⊆ N un
abierto de N . Por definición, que a ∈ f−1(a) nos dice que f(a) ∈ A.
Como A es un conjunto abierto, existe un radio ε > 0 tal que que
B(f(a), ε) ⊆ A.

Como f es continua, dado este radio ε > 0, podemos encontrar δ > 0
de modo que se tenga f(B(a, δ)) ⊆ B(f(a), ε). Por transitividad de
la inclusión, tenemos que f(B(a, δ)) ⊆ A, y por tanto que B(a, δ) ⊆
f−1(A).

Esto es precisamente que a es un punto interior de f−1(A). Como a
era arbitrario, se tiene que f−1(A) es efectivamente abierto en M .

⇐= : Supongamos que dado cualquier abierto A ⊆ N de N , su preimagen
f−1(A) ⊆M es un abierto de M . Probemos que f es continua en cada
a ∈ M . Notamos que dado a ∈ M , una bola B(f(a), ε) de cualquier
radio ε > 0 es un abierto de N . Por tanto, nuestra hipótesis nos dice
que f−1(B(f(a), ε)) es un abierto de M . Por definición, a es un pun-
to interior de f−1(B(f(a), ε)), por lo que existe δ > 0 de modo que
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B(a, δ) ⊆ f−1(B(f(a), ε)), y por tanto f(B(a, δ)) ⊆ B(f(a), ε). Esto
es precisamente que f es continua en a.

Observación. La imagen f(A) de un abierto de M bajo una función continua
f : M → N no es necesariamente un abierto de N : por ejemplo, la función
x 7→ x2 es continua de R→ R. El conjunto A := (−2, 2) es un abierto de R,
pero f(A) = [0, 4), que no es un conjunto abierto de R.

Ejemplo 1.5.4.

1. Sean M1, . . . ,Mn espacios métricos, y sean A1, . . . , An de modo que
cada Ai es un subconjunto abierto de Mi. Se tiene que el conjunto∏n
i=1Ai es un abierto de M :=

∏n
i=1Mi. En efecto, notamos que cada

proyección

πi :

n∏
j=1

Mj →Mi

es continua. Como Ai es un abierto de Mi, se tiene que π−1(Ai) es un
abierto de M . Como

∏n
i=1Ai =

⋂n
i=1 π

−1
1 (Ai), se tiene lo enunciado,

pues es una intersección finita de abiertos.

2. Sea M un espacio métrico y sean f1, . . . , fn ∈ C(M,R). El conjunto

A := {x ∈M : fi(x) > 0 para cada i = 1, . . . , n}

es abierto en M . Para probar esto, usamos el ejemplo anterior: notamos
que la función f : M → Rn; x 7→ (f1(x), . . . , fn(x)) es continua, y que
el conjunto

∏n
i=1(0,∞) es abierto en Rn, pues es producto de abiertos.

Se sigue que el conjunto A = f−1(
∏n
i=1(0,∞)) es un abierto de M .

3. Sean M,N espacios métricos, y sean f, g : M → N funciones continuas.
Se tiene que el conjunto

A := {x ∈M : f(x) 6= g(x)}

es abierto en M : sea F (x) := d(f(x), g(x)). Como esta función es con-
tinua M → R, se sigue que

{x ∈M : F (x) > 0} = {x ∈M : d(f(x), g(x)) 6= 0}
= {x ∈M : f(x) 6= g(x)}
= A.

Por el punto anterior, se concluye que A es abierto en M .

4. Podemos probar de otra forma que una bola abierta es un conjunto
abierto. Sea M un espacio métrico, y B(a, r) una bola abierta de M
para algunos a ∈ M, r > 0. Consideremos la función M → R definida
por x 7→ r − d(a, x). Esta es continua, y es claro que

{x ∈M : f(x) > 0} = {x ∈M : d(a, x) < r}
= B(a, r),

por lo que el punto (2) nos asegura que B(a, r) es un abierto de M .
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La definición de discontinuidad es simplemente la negación lógica de la
definición de continuidad:

Definición 1.5.5. Sean (M,d) y (N, ρ) espacios métricos. Decimos que una
función f : M → N es discontinua en a ∈ M si no es continua en a, vale
decir, si existe un ε > 0 tal que para todo δ > 0 podemos encontrar un
xδ ∈M tal que d(xδ, a) < δ pero ρ(f(xδ), f(a)) ≥ ε.

Ejemplo 1.5.6. Consideremos la función caracteŕıstica de Q, dada por

1Q : R −→ R

x 7−→

{
1 si x ∈ Q,
0 si x 6∈ Q.

Esta función es discontinua en todo a ∈ R: sea ε := 1/2 y δ > 0. Si a es
racional, consideramos xδ irracional tal que |xδ − a| < δ, y si a es irracional
consideramos xδ racional tal que |xδ − a| < δ. En ambos casos se tiene que
|1Q(xδ)− 1Q(a)| = 1 ≥ 1/2, por lo que 1Q es en efecto discontinua en a.

Ejemplo 1.5.7. Consideremos la función

f : R −→ R

x 7−→

{
sen
(
1
x

)
si x 6= 0,

0 si x = 0.

Esta función es discontinua en 0: sea ε := 1/2 y para cada n ∈ N considere-
mos xn := 2

(2n+1)π
. Se sigue que

sin(1/xn) = sin
(π

2
+ πn

)
= ±1.

Por tanto, se tiene que |xn − 0| < 1/n (esto es directo), pero también que

|f(xn)− f(0)| =
∣∣∣∣sin( 1

xn

)
− 0

∣∣∣∣
= 1

≥ 1/2

= ε.

Por tanto, f es efectivamente discontinua.

Definición 1.5.8. Sea M un espacio métrico. Decimos que un F ⊆ M es
cerrado en M si su complemento M − F es abierto en M .

Observación. Si bien “abierto”y “cerrado” son antónimos en castellano, en
este contexto un conjunto abierto no es lo contrario de un conjunto cerrado:
por ejemplo Q no es abierto ni cerrado en R, y en cualquier espacio métrico
M , se tiene que ∅, M son abiertos y cerrados en al mismo tiempo.
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Ejemplo 1.5.9.

1. Sea M un espacio métrico. Cualquier bola cerrada

B[a, r] := {x ∈M : d(x, a) ≤ r} (1.5.9.1)

es cerrada, pues dado y ∈ A := M −B[a, r], se tiene que s := d(y, a) >
r. Aśı, podemos considerar B(y, s− r), que será un abierto completa-
mente contenido en A.

2. Sea M un espacio métrico. Cualquier singleton {x} ⊆M es cerrado en
M , pues dado a ∈ A := M −{x}, podemos considerar s < d(a, x), y la
bola B(x, s) estará completamente contenida en A.

Prestemos atención a la ecuación 1.5.9.1: la única diferencia con las bolas
abiertas es que ahora admitimos puntos que estén en el “borde” de las bolas,
y el resultado fue un conjunto cerrado. La definición para cualquier conjunto
(no necesariamente bolas abiertas) es la siguiente:

Definición 1.5.10. Sea M un espacio métrico, y X ⊆ M . Decimos que
x ∈ M es un punto frontera de X si cualquier vecindad Ux de x contiene
puntos tanto como de X como de su complemento M −X, es decir, si

Ux ∩X 6= ∅, y Ux ∩ (M −X) 6= ∅.

El conjunto de todos los puntos frontera de X se llama la frontera de X, y
se denota ∂X.

Observación. Los puntos frontera de un conjunto pertenecen al espacio métri-
co ambiente, pero no necesariamente a dicho conjunto.

Ejemplo 1.5.11. Sea M un espacio métrico. La esfera de centro a ∈ M y
radio r > 0, definida S(a, r) := {x ∈M : d(a, x) = r} es la frontera de las
bolas B(a, r) y B[a, r].

El resultado esperado es que para conseguir un cerrado a partir de cual-
quier conjunto, basta añadirle su frontera:

Proposición 1.5.12. Sea M un espacio métrico. Dado X ⊆ M , se tiene
que el conjunto X := X ∪ ∂X es cerrado.

Demostración. Sea τM la topoloǵıa generada por las bolas de M . Directa-
mente,

M −X = {x ∈M : x 6∈ X ∧ ∃Ux ∈ τM [(Ux ∩X = ∅ ∨ Ux ∩ (M −X) = ∅]}.

En cualquier caso, la vecindad Ux es un abierto contenido en M −X.

Aśı, hemos construido un conjunto cerrado a partir de X:

Definición 1.5.13. Sea M un espacio métrico. Dado X ⊆ M , el conjunto
X := X ∪ ∂X se llama la cerradura (o clausura) de X.

Esta definición de clausura es algo laboriosa de usar. Podemos dar una
caracterización de la clausura de un conjunto como aquellos puntos que están
arbitrariamente cerca de dicho conjunto:
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Proposición 1.5.14. Sea M un espacio métrico y X ⊆ M . Se tiene que
a ∈ X si y solo si para todo ε > 0 podemos encontrar algún x ∈ X de modo
que d(a, x) < ε.

Demostración. Veamos ambas implicancias.

=⇒ : Si a ∈ X, el resultado es claro. Por otro lado, si a ∈ ∂X, sabemos que
dado ε > 0, se tiene que A := B(a, ε) ∩ X 6= ∅. Aśı, cualquier x ∈ A
satisface lo requerido.

⇐= : Sea a ∈ M tal que para todo ε > 0 podamos encontrar x ∈ X tal que
d(a, x) < ε. Claramente siempre se tiene que x ∈ A := B(a, ε) ∩ X,
por lo que A 6= ∅. De acá hay dos posibilidades: B(a, ε) intersecta a
M −X, o no. En el primer caso se tiene que a ∈ X, y en el segundo
que a ∈ ∂X. Es decir, a ∈ X.

Podemos dar una caracterización de conjunto cerrado a través de la clau-
sura:

Lema 1.5.15. Sea M un espacio métrico. Un F ⊆ M es cerrado en M si
y solo si es su misma clausura, es decir, que F = F .

Demostración. Que F sea su misma clausura nos dice que contiene a todos
sus puntos adherentes, por lo que todo punto fuera de F no será adherente
a F . Por tanto, la última observación nos indica que todo punto en M − F
pertenece a int(M − F ), es decir, que M − F ⊆ int(M − F ).

Esto, más el hecho que int(M − F ) ⊆ M − F , nos permite concluir que
M − F = int(M − F ), esto es, que M − F es abierto, y por tanto que F es
cerrado.

Los siguientes lemas verifican que estudiar topoloǵıa desde el punto de
vista de los abiertos es equivalente a estudiarla desde los cerrados:

Lema 1.5.16. Sea M un espacio métrico. La τ colección de todos los con-
juntos cerrados de M es una topoloǵıa en M .

1. M, ∅ ∈ τ .

2. Si F1, . . . , Fn ∈ τ , entonces
⋃n
i=1 Fi ∈ τ .

3. Sea L es un conjunto de ı́ndices. Entonces si Fλ ∈ τ para todo λ ∈ L,
entonces

⋂
λ∈L Fλ ∈ τ .

Demostración. Basta tomar complementos adecuadamente en la proposición
1.3.5 y usar las leyes de De Morgan.

Observación. Una unión arbitraria de cerrados no es necesariamente un con-
junto cerrado: sea M un espacio métrico y X ⊂M un abierto de M . Se tiene
que X =

⋃
x∈X {x}, pero cada {x} es cerrado en M .

Lema 1.5.17. Sean M,N espacios métricos. Una función f : M → N es
continua si y solo si la preimagen f−1(F ) ⊆M de cualquier cerrado F ⊆ N
de N , es un cerrado de M .

Demostración. Basta tomar complementos adecuadamente en la proposición
1.5.3, usando las leyes de De Morgan.
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1.6. Espacios métricos compactos

La noción de compacidad es central en el análisis. Su concepción no es
una historia clara, sino que fue el fruto de una serie de abstracciones de
propiedades de intervalos de la recta real. Empezaremos dando cuenta breve
de la exposión histórica detallada que se puede encontrar en [Ram14].

Para la década del 1900 ya se conoćıan resultados importantes sobre
los intervalos de R, que actualmente son clásicos y son estudiados en los
cursos de Cálculo Real. Por ejemplo, Bernard Bolzano, en su trabajo más
famoso, Rein analytischer Beweis [Bol17], probó que toda sucesión acotada
(e infinita) en R posee alguna subsucesión convergente (hecho llamado la
Propiedad de Bolzano1), como un lema para probar el Teorema del Valor
Intermedio. También, en su Functionenlehre [Bol30, I, §§20–21]2, demostró
el Teorema del Valor Extremo, que indica que toda función continua en un
intervalo cerrado alcanza sus valores mı́nimo y máximo en dicho intervalo.

Estas propiedades son deseables, y el interés por generalizarlas a otros
espacios vectoriales normados—incluso a espacios vectoriales topológicos—es
natural. En este contexto más general hay sucesiones de funciones definidas
en un mismo intervalo cerrado que no convergen. Fueron Giulio Ascoli y
Cesare Arzelà quienes dieron condiciones suficientes y necesarias para que
una sucesión de funciones posea el análogo respectivo de la propiedad de
Bolzano [Asc84, Arz95, Arz83].

Fréchet fue el que extrajo por primera vez la escencia de la propiedad de
Bolzano, y propuso formalmente una primera noción de compacidad en su
tesis [Fré06]: un espacio es compacto si toda sucesión en dicho espacio posee
alguna subsucesión convergente dentro del espacio. Esta definición de com-
pacidad es buena para espacios métricos, pero no para espacios topológicos
más generales.

En paralelo, se estaba desarrollando otra corriente que śı resultaŕıa en

una definición más general. Émile Borel, estudiando continuaciones anaĺıti-
cas, probó el hecho que todo cubrimiento numerable por abiertos de un inter-
valo cerrado, posee un subcubrimiento finito [Bor95]. Casi al mismo tiempo,
Pierre Cousin, en un art́ıculo sobre funciones de varias variables complejas
[Cou95], demostró el análogo para cerrados acotados de R2, pero generali-
zando a cubrimientos arbitrarios. Posteriormente, Arthur Schoenflies verificó
que la demostración de Borel se adaptaba directamente para cubrimientos
arbitrarios [Sch00], y atribuyó el resultado de Borel como una generalización
de un teorema de Eduard Heine, lo que llegó a generar controversia3. Henri
Lebesgue ofreció otra demostración, muy popular en la literatura, de este
resultado en su tratado sobre integración [Leb04]. Referiremos a este hecho
como la Propiedad de Borel.

Fue la escuela rusa de Pavel Alexandrov y Pavel Urysohn, al desarrollar
la topoloǵıa punto-conjunto, quienes notaron que la propiedad de Borel—
topológica en naturaleza—implica la propiedad de Bolzano, y propusieron
una noción más general de compacidad [AU29]. Esta idea se ha vuelto la

1La literatura refiere a esto como propiedad de Bolzano–Weierstraß, pues este último
los redescubrió y recontextualizó.

2Este art́ıculo fue escrito en 1830, pero publicado recién en 1930, según [RKL05, p.
304].

3Hasta el d́ıa de hoy este teorema suele llevar el nombre de Heine–Borel, pero Heine
nunca demostró ni enunció este resultado o algún análogo [Ram14, p. 7]. Para más
detalles, ver [AEP13] o [Dug89].
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dominante en la literatura, y es la que seguiremos.

Definición 1.6.1. Sea M un espacio mético y X ⊆ M . Decimos que una
colección de abiertos de M cubre a X si está contenido en la unión de dicha
colección, y en tal caso con referemos a esta como un cubrimiento de X.
Decimos que X es (topológicamente) compacto si todo cubrimiento de X
admite un subcubrimiento formado por finitos abiertos.

Ejemplo 1.6.2.

1. El teorema de Borel indica que todo subconjunto cerrado y acotado de
R es compacto. Esta idea se puede generalizar a Rn.

2. Todo espacio métrico M finito es compacto, pues para cubrir por abier-
tos todo M solo se necesitan finitos abiertos, de lo que es claro que todo
cubrimiento por abiertos de M admite un subcubrimiento finito.

3. En R, un intervalo abierto (a, b) no es compacto: notemos que existe un
N ∈ N de modo que An := (a+ 1

n
, b− 1

n
) ⊆ (a, b) para todo n > N . Es

claro que
⋃
nAn∈N = (a, b) es un cubrimiento por abiertos de (a, b). Sin

embargo, no admite subcubrimientos finitos, pues la unión de finitos
An es igual al más grande de estos.

4. En todo espacio métrico M , la unión de subconjuntos compactos es
compacta: sean K,L ⊆ M compactos, y consideremos C un cubri-
miento por abiertos de K ∪ L. En particular C es un cubrimiento por
abiertos de K y de L, por lo que, al ser compactos, podemos extraer
subcubrimientos finitos C1, C2 respectivamente, de lo que notamos que
C1∪C2 es un subcubrimiento finito de K ∪L. Inductivamente, la unión
numerable de subconjuntos compactos es compacta.

5. Una unión arbitraria de compactos puede no ser compacta: por ejem-
plo, R :=

⋃
x∈R {x}. El ejemplo (2) muestra que cada {x} es compacto,

pero R no es compacto.

Tomando complementos, podemos caracterizar la compacidad de un con-
junto por conjuntos cerrados:

Proposición 1.6.3. Un espacio métrico M es compacto si y solo si toda
familia de cerrados de M cuya intersección es vaćıa posee una subfamilia
finita cuya intersección es vaćıa.

Demostración. M es compacto si y solo si todo cubrimiento por abiertos
(Aλ)λ∈L de M admite un subcubrimiento finito. Simbólicamente, si M =⋃
λ∈LAλ, entonces existe existen finitos λ1, . . . , λn de modo queM =

⋃n
i=1Aλi .

Tomando complementos y utilizando las leyes de De Morgan, esto es equi-
valente a que si ∅ =

⋂
λ∈L(M − Aλ), entonces ∅ =

⋂n
i=1(M − Aλi). Como

esto es cierto para abiertos arbitrarios, y los cerrados son precisamente los
complementos de los abiertos, esto es cierto para todo cerrado.

Nos referimos a este hecho como la Propiedad de Intersecciones Fintas.
Estudiaremos algunas propiedades de la compacidad. En particular, vere-
mos cómo se relaciona con la topoloǵıa métrica, y con las otras nociones de
compacidad que describimos anteriormente.
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Proposición 1.6.4. Sea K un espacio métrico compacto. Un subespacio
S ⊆ K es cerrado si y solo si es compacto.

Demostración. Adoptemos la notación del enunciado y probemos ambas im-
plicancias.

=⇒ : Sea S un cerrado de K. Consideremos un cubrimiento por abiertos
de S arbitrario,

⋃
λ∈LAλ. Con esto, construimos el cubrimiento por

abiertos de K que consiste de
⋃
λ∈LAλ ∪ (K − S), del cual extraemos

el subcubrimiento finito

C := Aλ1 ∪ . . . ∪Aλn ∪ (K − S).

Es claro S ⊆ C, pero como (K−S) no tiene puntos de S, debe ser que
S ⊆ Aλ1 ∪ . . . ∪ Aλn , de lo que hemos encontrado un subcubrimiento
finito del original, lo que prueba la compacidad de S.

⇐= : Sea S compacto en K, y supongamos que no es cerrado en K, es decir,
que S es distinto a su clausura, y por tanto existe x ∈ (S − S) = ∂S.
Para llegar a una contradicción, habŕıa que encontrar un cubrimiento
por abiertos de S que no admitiera una subcubrimiento finito. Para
cada n ∈ N, sea

An := (M −B[x, 1
n

]),

los cuales son claramente abiertos, pues son los complementos de las
bolas cerradas, que son conjuntos cerrados. Más aún,

⋃
n∈NAn es un

cubrimiento (abierto) de S: basta notar que como
⋂
n∈NB[x, 1

n
] = {x},

entonces se tiene que

(M −
⋂
n∈NB[x, 1

n
]) = M −

⋃
n∈N(M −B[x, 1

n
])

=
⋃
n∈N

An

= M − {x},

el cual es abierto pues es complemento de un singleton, los cuales siem-
pre son cerrados.

Es claro que estos conjuntos forma una cadena ascendente A1 ⊆ A2 ⊆
. . ., pues a medida que n crece, cada An corresponde a haberle quitado
a M discos cada vez más pequeños. Por tanto, cualquier unión finita
de estos conjuntos corresponde a aquel que sea más grande (en este
caso, al que tenga mayor ı́ndice).

Sin embargo, esto es lo que nos hace llegar a la contradicción: como
x ∈ ∂S, se sigue que cada B[x, 1

n
] tiene al menos un punto de S, lo que

implica que a cada An le falta al menos un punto de S, por lo que a
cualquier unión finita de los An le falta al menos un punto de S. Por
tanto, estos conjuntos son un cubrimiento por abiertos de S que no
admite un subcubrimiento finito, lo que contradice la compacidad de
S, de lo que concluimos que S debe ser efectivamente un cerrado.

Observación. De hecho, probamos algo más fuerte: en la segunda implicancia
nunca usamos el que K era compacto. Esto no es una coincidencia o un error,
pues el resultado general es que en todo espacio métrico—no necesariamente
compacto—un conjunto compacto es cerrado.
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Corolario 1.6.5. Sea M un espacio métrico.

1. Si (Kλ)λ∈L es una familia de compactos de M , entonces
⋂
λ∈LKλ es

compacto.

2. Si M es compacto entonces es acotado.

Demostración. Probemos cada apartado.

1. Si (Kλ)λ∈L es una familia de compactos de M , entonces cada uno es
cerrado en M , por lo que su intersección también es un cerrado en M .
Por tanto, esta intersección también es un cerrado de cada Kλ, y por
la proposición anterior, un compacto en cada Kλ, por lo que lo es en
M .

2. Si M es compacto, entonces cualquier cubrimiento abierto C de M
admite un subcubrimiento finito C′, lo que nos indica queM es acotado.

Otra propiedad importante es que las funciones continuas mapean com-
pactos en compactos:

Proposición 1.6.6. Sean M,N espacios métricos y f : M → N continua.
Si K ⊆M es compacto en M , entonces f(K) es compacto en N .

Demostración. Consideremos un cubrimiento por abiertos

f(K) ⊆
⋃
λ∈LAλ.

Como f es continua y cada Aλ abierto, se sigue que cada conjunto preimagen
f−1(Aλ) es un abierto de M . Ahora, notamos que, tomando preimagen en
la expresión anterior, se tiene

f−1(f(K)) ⊆ f−1
(⋃

λ∈LAλ
)

=
⋃
λ∈L f

−1(Aλ),

donde en la contención usamos que el tomar preimagen preserva inclusión,
y en la igualdad el que la preimagen de una unión es la unión de las pre-
imágenes. Como K ⊆ f−1(f(K)), esto muestra que estas preimágenes son
un cubrimiento por abiertos de K.

La compacidad de K nos permite elegir un subcubrimiento finito K ⊆⋃n
i=1 f

−1(Aλi). Por tanto, tomando imagen se tiene que

f(K) ⊆ f
(⋃n

i=1 f
−1(Aλi)

)
=
(⋃n

i=1 ff
−1(Aλi)

)
⊆
⋃n
i=1Aλi ,

donde en la primera contención usamos que el tomar imagen preserva inclu-
sión, en la primera igualdad estamos usando que la imagen de una unión es
la unión de las imágenes, y en la segunda contención el que la imagen de la
preimagen de un conjunto está contenida en el conjunto.

Por tanto, hemos encontrado un subcubrimiento abierto finito del origi-
nal, lo que prueba la compacidad de f(K).
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Corolario 1.6.7. Sea K un espacio métrico compacto y M un espacio
métrico. Sea f : K →M

1. f env́ıa cerrados de K a cerrados de M .

2. La imagen de f es acotada.

Demostración. Verifiquemos ambos puntos.

1. Sea F ⊆ K cerrado. Como K es compacto, entonces un cerrado F
también es compacto. Por la proposición anterior, se tiene que f(F ) es
compacto en M , y nuevamente concluimos que f(F ) es cerrado en M .

2. El lema anterior nos indica que la imagen de K es compacta, por lo
que debe ser acotada en M .

Ejemplo 1.6.8. El primer apartado del resultado anterior es útil para pro-
bar que conjuntos son compactos. A modo de ejemplo, los dado un camino
continuo f : [a, b]→M , la curva f([a, b]) es compacta en M . Aśı, la circunfe-
rencia unitaria en R2 es compacta pues es la imagen de [0, 2π] bajo la función
t 7→ (cos t, sin t).

El siguiente resultado caracteriza la compacidad:

Teorema 1.6.9. Sea M un espacio métrico. Son equivalentes

1. M es compacto (Propiedad de Borel).

2. Todo subconjunto infinito de M posee algún punto de acumulación.

3. Toda sucesión en M posee alguna subsucesión convergente (Propiedad
de Bolzano).

Demostración.

1 =⇒ 2: Supongamos que M es compacto, y sea X ⊆M un conjunto sin puntos
de acumulación. Probemos que esto fuerza a X a ser finito. Suponga-
mos que fuese infinito. Por definición, X = X ∪X ′, y por hipótesis se
tiene que este unión es simplemente X. Por tanto, X es un conjunto
cerrado en M , y por ende compacto. Ahora, el que X no tenga pun-
tos de acumulación nos indica que para cada x ∈ M , hay una bola
B(x, rx) que contiene a lo más finitos puntos de X. Estas bolas son
un cubrimiento por abiertos de X, que no admite un subcubrimiento
finito, pues al retirar siquiera una de las bolas de la colección ya no
cubriŕıamos X. Esto contradice la compacidad de X, por lo que X
debe ser finito.

2 =⇒ 3: Supongamos que todo subconjunto infinito de M tiene algún punto de
acumulación. Consideremos una sucesión en M . Si tiene finitos térmi-
nos distintos, es claro que admite una subsucesión convergente. Si tiene
infinitos términos, entonces posee algún punto de acumulación, que es
ĺımite de alguna subsucesión.

3 =⇒ 1: Sea (Ui)i un cubrimiento por abiertos de M . El plan es verificar que
podemos encontrar un radio δ > 0 tal que las bolas de este radio estén
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dentro de algún Ui, y luego que podemos encontrar un subcubrimiento
usando estas bolas.

En efecto, supongamos que no, por lo que para cada n ∈ N, escogien-
do el radio δn := 1

n
, podemos encontrar una bola B(xn, δn) que no

esté contenida completamente en ningún Ui. Por hipótesis, la sucesión
de centros (xn)n∈N posee alguna subsucesión convergente, digamos a
a. Dicho a está contenido en algún Uj , que al ser abierto conteien a
alguna bola B(a, ε). Aśı, por definición de convergencia, podemos en-
contrar algún k ∈ N suficientemente grande de modo que xk ∈ B(a, ε).
Como esta bola es abierto, podemos encontrar otra boal centrada en
xk contenida en B(a, ε), por lo que está contenida en Uj , lo que es
contradictorio.

Afirmamos que hay finitas bolas de radio δ que cubren a M . Suponga-
mos lo contrario. Aśı, tomamos x1 ∈ M , y la bola B1 := B(x1, δ) no
cubre M , de modo que podemos elegir x2 ∈M −B1. Inductivamente,
elegimos xn ∈M−B1∪. . .∪Bn−1 para cada n ∈ N. Aśı, debeŕıamos po-
der extraer una subsucesión convergente de (xn)n∈N, pero d(xj , xi) ≤ δ,
por lo que dicha sucesión no puede converger.

Se puede demostrar que el productos de dos espacios métricos compactos
es compacto:

Proposición 1.6.10. Si K,L son espacios métricos compactos, entonces su
producto cartesiano K×L también es compacto. Inductivamente, el producto
finito de espacios métricos compactos es compacto.

Demostración. Sean K,L espacios métricos compactos. Probemos que su
producto K ×L es secuencialmente compacto. Sea (zn)n∈N la sucesión dada
por zn := (xn, yn) ∈ K × L, donde (xn)n∈N y (yn)n∈N son sucesiones en K
y L respectivamente. Por la compacidad de K, existe una subsucesión de
(xn)n∈N convergente a un x ∈ K, digamos indexada por N1 ⊆ N. Por tanto,
(yn)n∈N1 es otra sucesión en L, y por la compacidad de L, podemos encontrar
otra subsucesión de (yn)n∈N1 convergente a un y ∈ L, digamos indexada por
N2 ⊆ N1 ⊆ N. Se sigue que (zn)n∈N2 es una subsucesión convergente a (x, y)
de nuestra sucesión original, lo que prueba que K × L es secuencialmente
compacto, y por ende compacto.

La generalización natural del resultado anterior es pasar a productos
numerables.

Teorema 1.6.11 (Cantor–Tychonov). Un producto numerable de espacios
métricos compactos es en śı compacto si cada factor es compacto.

Demostración. Sea {Mn}n∈N un conjunto de espacios métricos compactos, y
sea M :=

∏
n∈NMn. Probemos que es secuencialmente compacto, utilizando

un argumento similar al lema anterior. Sea (xn)n∈N una secuencia arbitraria
en M . Para cada n ∈ N fijo, denotaremos por (xni)i∈N a la n-ésima entrada
de nuestra sucesión, que es a su vez una sucesión.

Utilizando la compacidad de M1, podemos encontrar una subsucesión de
(x1i)i∈N convergente a un a1 ∈ M1

4, digamos indexada por N1 ∈ N. Luego,

4Este a1 no es necesariamente único, por lo que debemos invocar el Axioma de Elec-
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(x2i)i∈N1 es otra sucesión en M2, y por compacidad podemos encontrarle una
subsucesión convergente a un a2 ∈ M2, indexada por, digamos, N2 ⊆ N1 ⊆
N. Procediendo de este modo, encontramos una familia numerable de ı́ndices
N ⊃ N1 ⊃ N2 ⊃ . . ., y un punto a := (a1, a2, . . .) ∈ M . Por el Axioma de
Elección, existe un N∗ ⊆ N de modo que su j-ésimo elemento sea el j-ésimo
elemento de Nj (todos los conjuntos ordenados de forma creciente). Se sigue
que (xn)n∈N∗ es una subsucesión convergente a a ∈M de la original, lo que
prueba que m es secuencialmente compacto, y por ende compacto.

1.7. Completitud

Vamos a estudiar otra abstracción de un fenómeno que ocurre en R.
Supongamos que estamos en un mundo donde nuestro sistema numérico es
Q. Una construcción estándar es la ráız cuadrada de un número, pero hay
veces que la situación se complica. Por ejemplo, se puede probar que la
ráız cuadrada de 2, asumiendo que existe, no es un número racional. Por
otro lado, esta aparece como solución de la ecuación x2 − 2, y como tal
se puede aproximar (eg., usando Newton–Raphson), como una sucesión de
números racionales, conocida como su expansión decimal. Por lo anterior,
esta sucesión no converge en Q, pero la distancia entre sus término es cada
vez más pequeña, de hecho, arbitrariamente pequeña. Estas sucesiones se
llaman Cauchy, y nuestro problema se parcha añadiendo formalmente los
ĺımites de las sucesiones Cauchy, lo que resulta en R, la compleción de Q.
Vamos a ver esta demostración formalmente más adelante.

Definición 1.7.1. Sea M un espacio métrico. Decimos que una sucesión
(xn)n∈N enM es Cauchy si para todo ε > 0, existeN ∈ N tal que d(xm, xn) <
ε para todos m,n > N .

Observación.

1. Esta definición dice que la distancia entre los términos de una suce-
sión Cauchy se va haciendo cada vez más pequeña. Esto contrasta con
la definición de sucesión convergente, en la que es la distancia entre
términos de la sucesión y un punto la que se va haciendo cada vez más
pequeña.

2. Toda subsucesión de una sucesión Cauchy, también es Cauchy: basta
notar que dado ε > 0, los términos en posiciones mayores a algún
N ∈ N siguen estando a distancia menor que ε, independientemente si
forman parte o no de alguna subsucesión.

Ejemplo 1.7.2.

1. Las sucesiones Cauchy de un espacio métrico finito son precisamente las
que son eventualmente constantes: si (xn)n∈N es una sucesión Cauchy
en un espacio métrico finito M := {m1, . . . ,mr}, entonces para ε :=
mı́n1≤i,j,≤r {d(xi, xj) 6= 0}, se tiene que existe N ∈ N tal que si i, j >
N , entonces d(xi, xj) < ε, por lo que d(xi, xj) = 0 y por tanto xi = xj .

ción. Kelley probó que dicho Axioma es lógicamente al Teorema que estamos estudiando
en [Kel50].
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2. De forma similar, en un espacio métrico con la métrica cero-uno las su-
cesiones Cauchy también son las eventualmente constantes: si (xn)n∈N
es Cauchy, entonces para 0 < ε < 1 se tiene que existe un N ∈ N tal
que d(xi, xj) < ε. Esto fuerza que d(xi, xj) = 0, y por tanto xi = xj .

Una pregunta natural es cómo se relacionan los conceptos de sucesiones
convergentes y sucesiones Cauchy. Intuitivamente, como en el caso de una
sucesión convergente los puntos de una sucesión se van acercando cada vez
más al ĺımite, se tiene que estos puntos también tiene que estar acercándose
entre śı.

Lema 1.7.3. Toda sucesión (xn)n∈N convergente en un espacio métrico M
es Cauchy.

Demostración. Sea (xn)n∈N como en el enunciado. Supongamos que xn → a.
Por tanto, dado ε > 0, existe N ∈ N tal que d(xn, a) < ε

2
para todo n > N .

Por tanto, para todos m,n > N , por la desigualdad triangular de M se tiene
que d(xm, xn) ≤ d(xm, a) + d(xn, a) < ε

2
+ ε

2
= ε, es decir, la sucesión es

efectivamente Cauchy.

Observación.

1. El contrarrećıproco del lema 1.7.3 nos dice que si una sucesión no es
Cauchy, entonces no es convergente.

2. Es importante notar que una sucesión sea Cauchy no implica que sea
convergente: consideremos Q como subespacio métrico de R, sea a ∈
R − Q, y consideremos una sucesión en R de números racionales que
converge a a (eg., la expansión decimal de a).

Notemos que esta sucesión converge en R, por lo que el lema 1.7.3
nos dice que es Cauchy en R, y como Q es subespacio métrico de R,
entonces la sucesión es Cauchy en Q. Sin embargo, a 6∈ Q, es decir, la
sucesión no es convergente en Q.

Lema 1.7.4. Toda sucesión (xn)n∈N Cauchy en un espacio métrico M es
acotada.

Demostración. Sea (xn)n∈N como en el enunciado. Como es Cauchy, dado
ε = 1, existe N ∈ N tal que d(xn, xm) < 1 para todos n,m > N , es decir,
que el conjunto {xn | n > N} está contenido en una bola B de diámetro
1. Se sigue el conjunto de los términos de la sucesión está contenido en
{x1, . . . , xN}∪B. Como cada conjunto es acotado, su unión también lo es.

Observación. El contrarrećıproco de 1.7.4 nos dice que si una sucesión no es
acotada, entonces no es Cauchy (y por tanto no es convergente). También, es
importante notar que una sucesión sea acotada no implica que sea Cauchy:
consideremos la sucesión (2, 0, 2, 0, . . .) en R. Esta sucesión es claramente
acotada (eg., por 2), pero no es Cauchy, pues la distancia entre términos es
siempre 0 o 2, en vez de arbitrariamente pequeña.

Lema 1.7.5. Si una sucesión (xn)n∈N Cauchy en un espacio métrico M
tiene alguna subsucesión convergente, entonces es convergente, y el ĺımite es
el mismo que el de la subsucesión.
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Demostración. Sea (xn)n∈N como en el enunciado, y sea (xnk )k∈N una subsu-
cesión de (xn)n∈N que converge a a ∈M . Probemos que igualmente xn → a.

Sea ε > 0. Como (xn)n∈N es Cauchy, existe N1 ∈ N tal que d(xm, xn) < ε
2

para todos m,n > N1. Por otro lado, como (xnk )k∈N es convergente, existe
N2 ∈ N tal que d(xnk , a) < ε

2
para todo nk > N2. Sea N := máx {N1, N2}.

Por tanto, por la desigualdad triangular de M , se tiene que

d(xn, a) ≤ d(xn, xnk ) + d(xxk , a) <
ε

2
+
ε

2
= ε,

para todos xn, xnk > N Esto es por definición que xn → a.

Observación. El contrarrećıproco de 1.7.5 dice que si una sucesión Cauchy no
es convergente, entonces todas sus subsucesiones divergen. También, si una
sucesión posee dos subsucesiones que convergen a ĺımites distintos, entonces
esta no puede ser Cauchy.

Definición 1.7.6. Decimos que un espacio métrico M es completo si toda
sucesión Cauchy en M es convergente.

Ejemplo 1.7.7.

1. Q no es un espacio métrico completo, como muestra el caso de
√

2.

2. Los espacios con la métrica cero-uno son completos: cualquier sucesión
Cauchy acá es eventualmente constante , y las sucesiones (eventual-
mente) constantes son convergentes.

El siguiente resultado es crucial para el análisis y cálculo real, y es una
muy buena aplicación de toda la teoŕıa que hemos revisado hasta ahora.

Teorema 1.7.8. Los números reales R son un espacio métrico completo con
la métrica usual.

Demostración. Sea (xn)n∈N una sucesión Cauchy en R. Para cada n ∈ N,
definimos el conjunto Xn := {xi : i ≥ n} = {xi, xi+1, . . .}. Notemos que si
i > j, entonces Xj ⊇ Xi, es decir, X1 ⊇ X2 ⊇ . . .

Como X1 tiene a todos los términos de la sucesión, y esta es Cauchy, se
sigue que X1 es acotado por algún b ∈ R, y como X1 contiene a Xn para
cada n ∈ N, se tiene que estos también son acotados. En tanto también son
no vaćıos, tienen ı́nfimo. Sea an := ı́nf Xn para cada n ∈ N.

Si consideramos la sucesión (an)n∈N, como esta es monótona (a1 ≤ a2 ≤
· · · ) y acotada por b, entonces converge al supremo del conjunto de los térmi-
nos de la sucesión, digamos a a := sup {an}n∈N. Probemos que xn → a.

Sea ε > 0. Como (xn)n∈N es Cauchy, entonces existe algún N ∈ N tal
que |xn − xm| < ε para n,m > N . Como a es supremo de {an}n∈N, se tiene
que a − ε no es cota superior de {an}n∈N, es decir, existe k ∈ N tal que
a− ε < ak < a. En particular, como (an)n∈N es creciente, podemos contrar
k > N es decir, existe k ∈ N tal que a− ε < ak < a.

Por otro lado, ak es ı́nfimo de Xk, por lo que ak + ε no es cota inferior de
Xk, es decir, existe j ∈ N tal que ak < xj < ak + ε. En particular, xj ∈ Xk,
por lo que existe j > k tal que ak < xj < ak + ε. Por tanto, se tiene la
cadena de desigualdades

a− ε < ak < xj < ak + ε < a+ ε,
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para j, k > N . Es decir, para n > N se tiene que |xn − a| < ε, por lo que
efectivamente xn → a. Por tanto, R es completo.

El siguiente resultado dice que en un espacio completo, ser cerrado es
equivalente a ser completo:

Proposición 1.7.9. Sea M un espacio métrico completo. Un subespacio
F ⊆M es cerrado si y solo si es completo.

Demostración. Probemos ambas implicancias.

=⇒ : Supongamos que F ⊆M es cerrado. Sea (xn)n∈N una sucesión Cauchy
en F . Como F es cerrado, entonces a := ĺımn→∞ xn ∈ F , lo que prueba
que F es completo.

⇐= : Supongamos que F ⊆ M es completo y consideremos una sucesión
(xn)n∈N en F convergente a a ∈ M . Por 1.7.3, esta sucesión también
es Cauchy en M , por lo que es Cauchy en F , por lo que es convergente
en F , lo que prueba que F es cerrado.

El siguiente teorema caracteriza los espacios completos como aquellos
que poseen la propiedad de los intervalos encajados:

Teorema 1.7.10 (Intersección de Cantor). Un espacio métrico M es com-
pleto si y solo si para toda cadena decreciente F1 ⊃ F2 ⊃ . . . de cerrados no-
vaćıos en M tales que ĺımn→∞ diam(Fn) = 0, se tiene que

⋂
n∈N Fn = {a}

para algún a ∈M .

Demostración. Probemos ambas implicancias.

=⇒ : Sean M completo y {Fn}n∈N como en el enunciado. Para cada n, es-
cogemos un xn ∈ Fn (cosa que podemos hacer porque cada Fn es
no-vaćıo). Esto define una sucesión (xn)n∈N en M . Podemos probar
que esta sucesión es Cauchy en M .

En efecto, dado N ∈ N, se tiene que si m,n > N , entonces, Fn, Fm ⊂
FN , y por tanto xm, xn ∈ FN . Por otro lado, como ĺımn→∞ diam(Fn) =
0, se tiene que para cada ε > 0 existe un N ∈ N de modo que
diam(FN ) < ε. Por tanto, dado ε > 0, se tiene que existe N ∈ N
de modo que

m,n > N =⇒ xm, xn ∈ FN =⇒ d(xm, xn) < diam(FN ) < ε,

por lo que (xn)n∈N es efectivamente Cauchy en M , y como M es com-
pleto, se tiene que (xn)n∈N converge.

Sea a := ĺımn→∞ xn. Para ver que a ∈
⋂
n∈N Fn, notamos lo siguiente:

a partir de cada N ∈ N, se tiene que xn ∈ FN para todo n ≥ N , por
lo que ĺımn→∞ xn = a ∈ FN . Como FN ⊆ FN−1 ⊆ . . . ⊆ F1, se tiene
que a ∈ Fk para todo k ∈ N, y por tanto a ∈

⋂
n∈N Fn.

Para probar que la intersección no posee otro elemento, supongamos
lo contrario: sean a, b ∈

⋂
n∈N Fn. Por tanto, en particular se tiene

que d(a, b) ≤ diam(Fn) para todo n ∈ N, por lo que en particular
d(a, b) ≤ ĺımn→∞ diam(Fn) = 0, de lo que d(a, b) = 0, y por definición
de métrica, a = b.
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⇐= : Supongamos que la intersección de una cadena decreciente cerrados no-
vaćıos en M con diámetro tendiendo a 0 es un único punto. Para probar
que M es completo, probaremos que es secuencialmente completo.

Sea (xn)n∈N una sucesión Cauchy, y definamos Xn := {xj}j≥n. Es claro
que X1 ⊇ X2 ⊃ . . . es una cadena decreciente de conjuntos no-vaćıos,
por lo que X1 ⊇ X2 ⊃ . . . es una cadena decreciente de conjuntos
no-vaćıos cerrados en M .

Como (xn)n∈N es Cauchy, la distancia entre puntos es decreciente a
medida que crece n, por lo que se tendrá que

ĺım
n→∞

diam(Xn) = ĺım
n→∞

diam(Xn) = 0,

y por hipótesis se tendrá que
⋂
n∈NXn = {a} para algún a ∈M .

Aśı, a es el ĺımite de una subsucesión de (xn)n∈N, y cómo esta es
Cauchy, se tiene que en verdad ĺımn→∞ xn = a ∈ M . Como (xn)n∈N
era arbitraria, se tiene que cualquier sucesión Cauchy converge en M ,
por lo que M es efectivamente completo.
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1.8. Conexidad



1.9. Continuidad uniforme

1.9. Continuidad uniforme

La continuidad que revisamos es local, pero hay veces que esta condición
no es suficiente para deducir resultados importantes. Por ejemplo, para de-
mostrar que toda función [a, b]→ R continua es Riemann-integrable, Cauchy
utilizó (sin darse cuenta) el hecho no trivial de que las funciones continuas
en un intervalo cerrado y acotado son de hecho uniformemente continuas, en
el sentido de que no solo mapean vecindades de un punto a vecindades de
la imagen del punto, sino que mapean a puntos cercanos de modo que sus
imágenes sean cercanas:

Definición 1.9.1. Sean (M,d) y (N, ρ) espacios métricos. Decimos que una
función f : M → N es uniformemente continua si para todo ε > 0 podemos
encontrar δ > 0 de modo que si d(x, y) < δ entonces ρ(f(x), f(y)) < ε.

Observación.

1. La diferencia lógica con la continuidad es solo el orden de los cuantifica-
dores. Esto se traduce a que el δ que vayamos a escoger, solo dependerá
del valor de ε, y no de los puntos que elijamos.

2. Es claro que si f es uniformemente continua, entonces es continua.
El rećıproco no es cierto. Por ejemplo, al considerar la función R→ R
dada por f(x) := x2 y dado δ > 0 arbitrario, se tendrá que (asumiendo
x > 0) ∣∣∣∣f(x+

δ

2

)
− f(x)

∣∣∣∣ = xδ +
δ2

4
. (1.9.1.1)

Se tiene que |x+ δ/2− x| = |δ/2| < δ, pero el lado derecho de la
ecuación 1.9.1.1 no es acotado como función de x.

Lema 1.9.2. De estar bien definida, la composición de funciones uniforme-
mente continuas es uniformemente continua.

Demostración. La demostración del lema 1.5.2 funciona mutatis mutandis.

Ejemplo 1.9.3.

1. Toda función lipschitziana es uniformemente continua. La demostra-
ción del ejemplo 2.1.3 funciona mutatis mutandis.

2. La suma de funciones uniformemente continuas es uniformemente con-
tinua, lo que es directo de probar. Sin embargo, el producto de funcio-
nes uniformemente continuas no ha de serlo, como ejemplifica x 7→ x2

definida R→ R. Sin embargo, al restringir esta función a un intervalo
acotado, se vuelve lipschitziana, y por tanto uniformemente continua.

Recordemos que una función es continua si mapea sucesiones convergen-
tes a sucesiones convergentes, preservando el ĺımite. Algo similar ocurre con
funciones uniformemente continuas y sucesiones Cauchy:
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Proposición 1.9.4. Sean M,N espacios métricos. Si f : M → N es uni-
formemente continua, entonces mapea sucesiones Cauchy en M a sucesiones
Cauchy en N .

Demostración. Consideremos (xn)n∈N una sucesión Cauchy en M , y conside-
remos la sucesión (f(xn))n∈N en N . Sea ε > 0. Por la continuidad uniforme
existe δ > 0 de modo que si d(x, y) < δ, entonces d(f(x), f(y)) < ε. Por
la propiedad de Cauchy, existe N ∈ N de modo que si m,n > N , entonces
d(xm, xn) < δ. Por tanto, d(f(xm), f(xn)) < ε, lo que prueba que la sucesión
de imágenes es Cauchy en N .

Observación.

1. El que la continuidad sea uniforme es necesario: una función que es
solo solo continua, como

f : R− {0} −→ R
x 7−→ 1

x
,

mapea la sucesión Cauchy ( 1
n

)n∈N en R a la sucesión (n)n∈N, que no
es Cauchy en R.

2. Con esto, podemos probar que el que una función mapee sucesiones
Cauchy a sucesiones Cauchy no es un criterio para chequear continui-
dad uniforme: la función real x 7→ x2 es continua, por lo que mapea
sucesiones convergentes (y por tanto Cauchy), en sucesiones conver-
gentes (y por tanto Cauchy), pero no es uniformemente continua.

El siguiente resultado dice que un producto finito de espacios completos,
es completo:

Proposición 1.9.5. Si M,N son espacios métricos completos, entonces
M × N es completo. Inductivamente, si M1, . . . ,Mn son espacios métricos
completos, entonces

∏n
i=1Mi es completo.

Demostración. Sea (zn)n∈N una sucesión Cauchy en M ×N dada por

zn := (an, bn),

para cada n ∈ N. Como las proyecciones π1 : M × N → M y π2 : M ×
N → N son uniformemente continuas, se sigue que (xn)n∈N y (yn)n∈N son
Cauchy en M y N respectivamente, por lo que son convergentes en M y N
respectivamente, debido a la completitud, digamos a a y b respectivamente.
Se sigue que zn → (a, b) ∈ M × N , de lo que la sucesión es Cauchy, y por
tanto el espacio M ×N es completo.

Observación. El rećıproco de este resultado también es cierto, pero para
probarlo se necesitan herramientas que si bien no son complicadas, no hemos
revisado.

Ejemplo 1.9.6. Como ya probamos que R es completo, es directo que Rn
es completo para cualquier n ∈ N.

Podemos generalizar este resultado para productos numerables:
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Proposición 1.9.7. Si (Mn)n∈N es una familia numerable de espacios métri-
cos completos, entonces

∏
i∈NMi es completo.

Demostración. La idea es análoga al resultado anterior, pero la notación
complica algo las cosas. Sea ((xmn)n∈N)m∈N una sucesión Cauchy en

∏
n∈NMi.

Cada proyección πi :
∏
i∈NMi →Mi es uniformemente continua, por lo que

mapea sucesiones Cauchy a sucesiones Cauchy. En particular cada (xin)n∈N
es Cauchy en Mi, por lo que es convergente en Mi, digamos a ai. Se sigue
que ((xmn)n∈N)→ (a1, a2, . . .), lo que prueba que el producto numerable es
efectivamente completo.

Observación. Igualmente, el rećıproco de este resultado es cierto, pero no lo
probamos.

El siguiente resultado es importante en general. Por ejemplo, es el pa-
so crucial para demostrar que toda función continua en R es Riemann-
integrable.

Proposición 1.9.8 (Heine–Cantor). Sean K,N espacios métricos. Si K es
compacto, entonces cualquier función continua f : K → N es uniformemente
continua.

Demostración. Supongamos, buscando una contradicción, que la continui-
dad de f no fuese uniforme. En tal caso, existe ε > 0 de modo que para
cualquier δ > 0, en particular para δn := 1

n
, podemos encontrar xn, yn ∈ K

de modo que d(xn, yn) < δn, pero d(f(xn), f(yn)) ≥ ε. Consideremos las su-
cesiones formadas por los xn y los yn. En virtud de la compacidad, podemos
encontrar subsucesiones, ambas convergentes a un a ∈ K. Como f y d son
continuas, se tiene que

ĺım
n→∞

d(f(xn), f(yn)) = d
(

ĺım
n→∞

f(xn), ĺım
n→∞

f(yn)
)

= d
(
f
(

ĺım
n→∞

xn
)
, f
(

ĺım
n→∞

f(yn)
))

= d(f(a), f(a)) = 0,

lo que es contradictorio.
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El espacio de las funciones

continuas sobre un compacto

Recordemos del Ejemplo ?? que dado un conjunto X, el conjunto B(X)
es un espacio métrico con la función

d∞(f, g) := sup
x∈X
|f(x)− g(x)|,

que puede ser inducida por la norma ‖·‖∞. La convergencia en esta nor-
ma/métrica, se llama uniforme. Resulta ser que es completo:

Teorema 2.0.1. Dado un conjunto X, se tiene que B(X) es un espacio de
Banach, es decir, es completo respecto a la métrica inducida por la norma-
infinito ‖·‖∞.

Demostración. En efecto, consideremos una sucesión Cauchy (fn)n∈N en
B(X). Por definición esto es que dado ε > 0, existeN ∈ N tal que ‖fm − fn‖∞ <
ε para todos m,n > N . Esto nos dice que como

|fm(x)− fn(x)| ≤ ‖fm − fn‖∞ < ε,

para todo x ∈ X, entonces la sucesión (|fn(x)|)n∈N es Cauchy en R para
todo x ∈ X, y por tanto convergente en R. Aśı, nuestro candidato a ĺımite
puede ser definido punto a punto como

f(x) := ĺım
n→∞

fn(x).

Primero, corresponde chequear que f es acotada. En efecto, toda sucesión
Cauchy es acotada, por lo que existe M ∈ R de modo que ‖fn‖∞ ≤M para
cada n ∈ N. Como

|fn(x)| ≤ ‖fn‖∞ ≤M,

se sigue, tomando n→∞, que |f(x)| ≤M , es decir, que f es efectivamente
acotada.

Resta probar que nuestra sucesión original converge a f . Esto es directo,
pues para n > N se tiene que

‖fn − f‖∞ = ĺım
m→∞

‖fn − fm‖∞ < ε,

lo que prueba que efectivamente fn → f ∈ B(X).

33
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Si X es un espacio métrico compacto (eg., [a, b] con la métrica de R), el
conjunto de las funciones continuas a valores reales C(X) es un subespacio
métrico de B(X) gracias al Teorema del Valor Extremo, y también es una
R-espacio vectorial. Este espacio también es completo:

Teorema 2.0.2. Dado X un espacio métrico compacto, C(X) es un espacio
de Banach, es decir, es completo respecto a la métrica inducida por la norma
‖·‖∞.

Demostración. Recordemos que en un espacio completo, un subespacio es
completo si y solo si es cerrado. Por tanto, basta probar que C(X) es un
subespacio cerrado de B(X). Para ello, verificamos que que toda sucesión
convergente de funciones continuas tiene como ĺımite a una función continua,
lo que es un argumento breve: como X es compacto, las nociones de función
continua y uniformemente continua coinciden, y sabemos que el ĺımite de
funciones uniformemente continuas es uniformemente continuo.

En este contexto, el espacio C(X) también es un anillo (conmutativo, con
unidad) equipado con el producto punto a punto. La estructura de anillo y
de R-espacio vectorial son compatibles, en el sentido que la acción de R en
C(X) distribuye sobre el producto de R.

Más generalmente, dado un cuerpo k, decimos que un anillo A (con-
mutativo, con unidad1) es una k-álgebra si es un k-espacio vectorial, y las
operaciones involucradas son compatibles en el sentido del párrafo anterior.
Un ejemplo importante es el espacio de las funciones polinomiales con coefi-
cientes reales, restringidas a algún intervalo cerrado:

Ejemplo 2.0.3. Sea I ⊆ R un intervalo compacto, y consideremos

Pn(I) :=

{
p ∈ C(I) : p =

n∑
j=0

ajx
j , aj ∈ R

}
.

De nuestros cursos anteriores, sabemos que toda función polinomial a valores
reales definida en un intervalo compacto es continua, es decir Pn(I) ⊆ C(I),
que Pn(R) es un R-espacio vectorial, y que es un anillo. Para verificar que es
una R-álgebra, hay que verificar la condición de compatibilidad, que en este
caso se lee

(αf)(βg) = (αβ)(fg), α, β ∈ R, f, g ∈ Pn(R),

que es clara al expandir f y g.

2.1. Métodos de aproximaciones sucesivas

Un ejemplo importante de funciones continuas son las de Lipschitz, que
son aquellas limitadas en cuánto pueden cambiar. Por ejemplo, estas se utili-
zan para probar el teorema del punto fijo de Banach; también, pedir que una
función sea lipschitziana es la condición crucial para el teorema de Picard–
Lindelöf de existencia y unicidad de soluciones del problema de valor inicial.

1La existencia de la unidad es importante pues implica que contiene a todas las
constantes (ie., los elementos de k). Hay autores que estudian otras configuraciones. Por
ejemplo, se pueden considerar álgebras no-unitarias, no-conmutativas, o no-asociativas,
las que son naturales en otros contextos. Acá trabajaremos el caso más simple.
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Definición 2.1.1. Sean M,N espacios métricos. Una función f : M → N es
lipschitziana si existe una constante c > 0 tal que d(f(x), f(y)) ≤ c · d(x, y)
para todos x, y ∈M .

Ejemplo 2.1.2. El ejemplo más sencillo de funciones lipschitzianas son las
funciones constantes, porque la distancia entre imágenes bajo una función
constante siempre es 0, por lo que cualquier c funciona.

La propiedad importante de estas funciones, es que son todas continuas,
por lo que cada ejemplo de función lipschitziana es ejemplo de función con-
tinua:

Proposición 2.1.3. Toda función lipschitziana f : M → N es continua.

Demostración. Sea f lipschitziana de constante c. Debemos probar que f
es continua. Sean a ∈ M y ε > 0, y consideremos δ := ε/c. Se sigue que
d(f(x), f(a)) ≤ c · d(x, a), pues f es lipschitziana. Por tanto, si d(x, a) <
δ = ε/c, se tiene que d(f(x), f(a)) < c · ε/c = ε, es decir, f es efectivamente
continua.

Las funciones lipschitzianas tienen estructura de espacio vectorial:

Proposición 2.1.4. El conjunto Lip(R) de las funciones lipschitzianas R→
R es un R-espacio vectorial con la suma y escalamiento punto a punto.

Demostración. Consideremos f, g : M → R funciones lipschitzianas de cons-
tantes c, k y una constante λ ∈ R. Para probar que (f + g) también es
lipschitziana, notemos que

|(f + g)(x)− (f + g)(y)| = |f(x) + g(x)− f(y)− g(y)|
= |[f(x)− f(y)] + [g(x)− g(y)]|
≤ |f(x)− f(y)|+ |g(x)− g(y)|
≤ cd(x, y) + kd(x, y)

= (c+ k)d(x, y),

donde la tercera ĺınea se obtuvo por desigualdad triangular, y la cuarta
porque estamos suponiendo f, g lipschitzianas. Para probar que λf es lips-
chitziana, notamos que

|(λf)(x)− (λf)(y)| = |λf(x)− λf(y))|
= |λ||f(x)− f(y)|
≤ |λ|cd(x, y).

Para exhibir ejemplos, conviene desarrollar un criterio que permita veri-
ficar si una función real es lipschitziana. Sirve ver si tiene primera derivada
acotada:

Lema 2.1.5. Si f : R→ R es diferenciable con derivada acotada por enton-
ces es lipschitziana de constante c := sup {|f ′(x)|}.

Demostración. Dado c como en el enunciado, existe algún intervalo cerrado
I := [a, b] en el que f ′ es acotada por c. El teorema del valor medio nos dice
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que dados x, y ∈ I arbitrarios, existe un x < z < y tal que f(x) − f(y) =
f ′(z)(x − y). Por lo mencionado antes, se tiene que |f ′(z)| ≤ c, por lo que
tomando valor absoluto de la expresión anterior, se tiene que |f(x)− f(y)| ≤
c|x− y|.

Ejemplo 2.1.6.

1. Por tanto, funciones como las polinomiales restringidas a intervalos,
seno o coseno, son todas continuas.

2. Si bien esta condición es suficiente para determinar si una función
es lipschitziana, no es necesaria. Por ejemplo, el valor absoluto usual
f(x) := |x| es lipschitziana de constante 1, pero no es diferenciable en
0.

3. Decimos que una función es una contracción si es lipschitziana de cons-
tante 0 < c < 1. Si f es lipschitziana de constante c = 1, decimos que
es una contracción débil.

4. En cualquier espacio vectorial normado (E, ‖·‖), la norma es una con-
tracción débil, pues

d(‖x‖ , ‖y‖) = ‖‖x‖ − ‖y‖‖
= ‖‖x− 0‖ − ‖y − 0‖‖
≤ ‖x− y‖
= d(x, y).

Un problema recurrente en sistemas dinámicos y el estudio de ecuaciones
diferenciales es el encontrar puntos fijos. Recordemos la definición.

Definición 2.1.7. Sea A un conjunto y f : A → A. Decimos que x ∈ A es
un punto fijo de f si f(x) = x.

Existen múltiples teoremas que nos aseguran la existencia de estos puntos
fijos. En esta sección estudiaremos un par de estos resultados para espacios
métricos, aprovechando que ya tenemos múltiples herramientas en nuestro
arsenal.

Teorema 2.1.8 (Punto fijo de Brouwer). Consideremos R como espacio
métrico. Toda función continua f : [0, 1] → [0, 1] tiene al menos un punto
fijo x ∈ [0, 1].

Demostración. Consideremos la función auxiliar g(x) := f(x)− x. Notamos
que esta función es continua. Como f([0, 1]) ⊆ [0, 1], se tiene que g(0) =
f(0) − 0 = f(0) ≥ 0, y que g(1) = f(1) − 1 ≤ 0. El teorema del valor
intermedio nos asegura que existe x ∈ [0, 1] de modo que g(x) = 0, es decir,
tal que f(x) = x. Por tanto, hemos encontrado un punto fijo de f .

Hacemos dos observaciones. Primero, este resultado podŕıa haber sido
revisado en un curso de cálculo real sin problemas. Segundo, este teorema
se puede generalizar a Rn, pero no lo estudiamos pues no nos es relevante.
Ahora, probemos algo más interesante, y que śı usa herramientas de análisis.
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Este teorema es clave para demostrar, por ejemplo, el Teorema de Picard–
Lidelöf sobre existencia y unicidad de problemas de Cauchy en Ecuaciones
Diferenciales.

Teorema 2.1.9 (Punto fijo de Banach). Sea M un espacio métrico. Si M
es completo, entonces toda contracción f : M → M posee un único punto
fijo. Más aún, este punto fijo está dado por el ĺımite de la órbita bajo f de
cualquier x0 ∈M .

Demostración. Consideremos la órbita de x0 bajo f definida recursivamente
por

x0 := x0,

xn := f(xn−1) para n ≥ 1.

Para probar el resultado hay que probar que esta órbita siempre converge,
que este ĺımite es punto fijo de f , y que este punto fijo que encontramos
resulta ser único. Vamos en orden.

Para probar que (xn)n∈N converge, podemos aprovecharnos de que esta-
mos suponiendo que M es completo y probar únicamente que la sucesión es
Cauchy. Notamos que, estudiando términos consecutivos, se tiene

d(x1, x2) = d(f(x0), f(x1)) ≤ cd(x0, x1),

y también que

d(x2, x3) = d(f(x1), f(x2)) ≤ cd(x1, x2) ≤ c2d(x0, x1).

Inductivamente, se sigue que

d(xn, xx+1) ≤ cnd(x0, x1), (2.1.9.1)

para todo n ∈ N. Luego, notamos que si n < m, entonces m = n + p para
algún p ∈ N, lo que nos permite usar la desigualdad triangular múltiples
veces, obteniendo que

d(xn, xm) = d(xn, xn+p) ≤ d(xn, xn+1) + · · ·+ d(xn+p−1, xn+p)

≤ (cn + · · ·+ cn+p−1)d(x0, x1)

= cn(1 + c+ · · ·+ cp−1)d(x0, x1)

=
cn

1− cd(x0, x1).

En la primera desigualdad, usamos la desigualdad triangular, en la segunda
la cota obtenida en la ecuación 2.1.9.1, y en la última la fórmula cerrada
de una suma geométrica, que podemos utilizar en este caso porque estamos
asumiendo que |c| < 1. Tomando n → ∞ en la última linea, tenemos pro-
ducto de ĺımite nulo por constante, que es nulo. Por tanto, d(xn, xm)→ 0 y
concluimos que la sucesión es efectivamente Cauchy y por tanto convergente.
Sea a := ĺımn→∞ xn. Probar que a es punto fijo de f es directo, pues

f(a) = f
(

ĺım
n→∞

xn
)

= ĺım
n→∞

f(xn)

= ĺım
n→∞

xn+1 = a,
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donde en la segunda igualdad usamos la continuidad de f . Efectivamente a
es punto fijo de f

Para probar la unicidad, supongamos que b ∈ M también es un punto
fijo de f . Se tiene que

d(a, b) = d(f(a), f(b)) ≤ cd(a, b)) =⇒ d(a, b)− cd(a, b) = (1− c)d(a, b) ≤ 0.

Como (1−c) > 0, debe ser que d(a, b) ≤ 0, pero las métricas son no-negativas,
de lo que d(a, b) = 0. Es decir, a = b. Esto prueba el resultado.

2.2. El teorema de Stone–Weierstrass

Un problema natural es el siguiente. Consideremos X un espacio métrico
compacto, y A un sub-álgebra de C(X). Probamos que este espacio es cerra-

do, por lo que A ⊆ C(X). Aśı, podemos preguntarnos bajo qué condiciones
esta contención es una igualdad. Resulta que basta la hipótesis que A separe
puntos, en el sentido que dados x, y ∈ X, podamos encontrar f ∈ A tal que
f(x) 6= f(y).

Teorema 2.2.1 (Stone–Weierstrass). Sea X un espacio métrico compacto.

Si A ⊆ C(X) una sub-álgebra que separa puntos, entonces A = C(X).

Expliquemos la idea de la demostración. Fijada f ∈ C(X), para cada

ε > 0 queremos encontrar ϕ ∈ A tal que ‖f − ϕ‖∞ < ε, de modo que

f ∈ A. Esta ϕ estará dada por el máximo puntual de finitas funciones (acá
usaremos la compacidad), cada una dada por una interpolación adecuada de
f . Procedamos a la prueba.

Lema 2.2.2 (Interpolación). Bajo las hipótesis de Stone–Weierstrass, para
cada a, b ∈ X existe una función ha,b ∈ A tal que

ha,b(a) = f(a) y ha,b(b) = f(b).

Demostración. Si a = b, basta elegir f . Para a 6= b, por la hipótesis que A
separa puntos podemos encontrar ψ ∈ A tal que ψ(a) 6= ψ(b). Aśı, podemos
considerar la interpolación

ha,b(x) := f(a) + [f(b)− f(a)]
ψ(x)− ψ(a)

ψ(b)− ψ(a)
.

Es una combinación R-lineal de elementos de A, por lo que también es miem-
bro de A. Para verificar que satisface la propiedad de interpolación, basta
con evaluar directamente.

Lema 2.2.3 (Aproximación). Bajo las hipótesis de Stone–Weierstrass y fi-
jado x ∈ X, para cada ε > 0 existe g ∈ A tal que

g(y) ∈ (f(y)− ε, f(y) + ε),

para todo y ∈ X.

Demostración. Para cada y ∈ X, sea hx,y Podemos considerar el intervalo
real de radio ε alrededor de (f −hx,y)(y) ∈ R, cuyo conjunto preimagen, por
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continuidad, contiene una vecindad (que podemos asumir es una bola By)
en torno a y ∈ X tal que f(z)− hx,y(z) < ε, es decir

f(z) < hx,y(z) + ε

para cada z ∈ By.
La colección {By : y ∈ X} cubre X, y por la compacidad de X podemos

extraer un subcubrimiento finito By1 , . . . , Byn . Aśı, la función

hx(z) := mı́n(hx,y1(z), . . . , hx,yn(z))

está bien definida. En el lema siguiente probamos que de hecho hx ∈ A, pero
de momento lo asumimos.

Haremos un argumento análogo al recién visto, pero con hx. Dado x ∈ X,
como f es continua podemos encontrar una vecindad Vx de x de modo que
f(z) < hx(z) + ε para todo z ∈ Vx, o equivalentemente, que

f(z)− ε < hx(z).

Todos los Vx cubren X, y por compacidad extraemos finitos x1, . . . , xm ∈ X.
Aśı, la función

g(z) := máx(hx1(z), . . . , hxm(z))

está bien definida, y satisface la cota deseada. Estamos prontos a probar que
g ∈ A.

Lema 2.2.4 (Pertenencia). Bajo las hipótesis de Stone–Weierstrass, si f, g ∈
A, entonces

(f ∧ g)(x) := máx(f(x), g(x)), y (f ∨ g)(x) := mı́n(f(x), g(x))

pertenecen a A.

Demostración. Partimos recordando que un truco estándar permite probar
que

f ∧ g =
f + g

2
+
|f − g|

2
y f ∨ g =

f + g

2
− |f − g|

2
,

por lo que el problema está en verificar que |·| ∈ A.

Notemos que podemos escribir |f(x)| =
√
f(x)2. Por comodidad, norma-

licemos una f ∈ A, de modo que

F (x) :=
f(x)2

‖f(x)‖2∞
∈ [0, 1].

Esta función habita en A, por lo que nos gustaŕıa tomarle ráız cuadrada
para recuperar el valor absoluto. El problema es que la función x 7→

√
x no

necesariamente está en A.
Lo que śı podemos hacer es aproximarla uniformemente por funciones

polinomiales, que ciertamente están en A. Los aproximandos se definen re-
cursivamente como{

u1(t) := 0

un+1(t) := un(t) + 1
2
[t− un(t)2] para n ≥ 2.
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Se puede probar que la sucesión es (puntualmente) creciente mediante in-
ducción. Para probar que converge puntualmente a la ráız cuadrada usamos
un poco de manipulación algebraica. En efecto,∣∣∣√t− un+1(t)

∣∣∣ =

∣∣∣∣√t− un(t)− 1

2

(
t− un(t)2

)∣∣∣∣
=

∣∣∣∣√t− un(t)− 1

2

(√
t+ un(t)

)(√
t− un(t)

)∣∣∣∣
=

∣∣∣∣(√t− un(t)
)(

1− 1

2

(√
t+ un(t)

))∣∣∣∣,
y como un(t) ≤

√
t, el factor en la derecha es siempre positivo. Tomando n→

∞, la única forma en que se mantenga la igualdad es que
∣∣√t− un(t)

∣∣→ 0,
que es lo que hab́ıamos afirmado.

Gracias al Teorema de Dini, podemos concluir que un(t) →
√
t unifor-

memente. Por lo argumentado anteriormente, concluimos lo enunciado.

Aśı, el Ejemplo 2.0.3 muestra que el espacio Pn([a, b]) satisface las hipóte-
sis del Teorema de Stone–Weierstrass, por lo que deducimos inmediatamente
que las funciones polinomiales de [a, b] son densas en el espacio de funciones
continuas de [a, b], es decir, que toda función continua en [a, b] se puede apro-
ximar uniformemente por funciones polinomiales de [a, b]. Este resultado se
generaliza directamente a funciones polinomiales en varias variables.

2.3. El teorema de Arzelà–Ascoli

Probamos que un subconjunto en Rn es compacto si y solo posee la
Propiedad de Borel, es decir, si es cerrado y acotado. Este no es el caso en
espacios de funciones continuas, donde de hecho ninguna bola cerrada es
compacta. Veamos el caso de la bola unitaria:

Ejemplo 2.3.1. Consideremos C([a, b]). La bola unitaria cerrada

B[0, 1] =
{
f : [a, b]→ R continua: ‖f‖∞ ≤ 1

}
,

es cerrada (pues es una bola cerrada), y acotada. Sin embargo, no es com-
pacta: consideremos la sucesión (fn)n∈N en B[0, 1] dada por

gn(x) := xn

para cada n ∈ N. Esta sucesión converge puntualmente a la función

f(x) :=

{
0 x ∈ [0, 1)

1 x = 1,

que no es continua. En particular, esta sucesión y sus subsucesiones no tienen
ĺımite puntual en B[0, 1], y por tanto no tienen ĺımite uniforme en B[0, 1].
Esto es precisamente no ser compacto.

Por lo tanto nos gustaŕıa desarrollar alguna condición adicional que im-
poner sobre una familia de funciones continuas para recuperar la equivalencia
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a compacidad a la que ya nos acostumbramos. La respuesta se encuentra en
el concepto de equicontinuidad. Giulio Ascoli probó que efectivamente esta
condición bastaba en [Asc84], y Cesare Arzelà demostró que en verdad dicha
condición era necesaria en [Arz95]. Intuitivamente, una familia F de funcio-
nes continuas [a, b] → R será equicontinua si cada una de las funciones de
F env́ıa puntos suficientemente cercanos de [a, b] a imágenes uniformemente
cercanas. Formalmente:

Definición 2.3.2. Un subconjunto E ⊆ C([a, b]) se dice (uniformemente)
equicontinuo si dado cualquier ε > 0, podemos encontrar δ > 0 de modo que
si |x− y| < δ, entonces |f(x)− f(y)| < ε para todas las f ∈ E.

Veamos un par de ejemplos de familias equicontinuas.

Ejemplo 2.3.3.

1. Si E ⊆ C([a, b]) es formado por funciones lipschitzianas con misma
constante c > 0, entonces es equicontinuo. En efecto, dado ε > 0 cada
f ∈ E es tal que si |x− y| < ε

c
entonces |f(x)− f(y)| < ε.

2. La sucesión (fn)n∈N en C1([a, b]) dada por fn(x) := x
n

es equicontinua:

basta notar que d
dx
fn(x) = 1

n
≤ 1, es decir, cada fn tiene derivada

acotada por 1, por lo que cada una es lipschitziana de constante 1. El
ejemplo anterior nos permite concluir que esta sucesión es en efecto
equicontinua.

Ahora, estudiaremos algunos resultados preliminares sobre familias equi-
continuas que nos serán de utilidad para probar el Teorema de Arzelà–Ascoli.

Lema 2.3.4. Si una sucesión equicontinua (fn)n∈N en C([a, b]) converge
puntualmente a f ∈ C([a, b]), entonces el conjunto E := {fn}n∈N ∪ {f} es
equicontinuo.

Demostración. Falta probar la equicontinuidad de f . Usando desigualdad
triangular y ceros convenientes, tenemos para cada n ∈ N que

|f(x)− f(y)| = |f(x)− fn(x) + fn(x)− f(y)|
≤ |f(x)− fn(x)|+ |fn(x)− f(y)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(y) + fn(y)− f(y)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|.

Por la convergencia puntual, para n suficientemente grande el primer y
último sumando de la expresión anterior son < ε, y por la equicontinuidad,
el sumando de en medio es < ε cuando |x− y| < δ. Aśı, concluimos que

|f(x)− f(y)| < 3ε

cuando |x− y| < δ, y como ε era arbitrario esto termina de verificar la
equicontinuidad para f .

Lema 2.3.5. Si una sucesión equicontinua (fn)n∈N en C([a, b]) converge
puntualmente en a f ∈ C([a, b]), entonces esta convergencia es uniforme
sobre cada compacto K ⊆ [a, b].
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Demostración. Debemos probar que ‖fn − f‖∞ → 0, o equivalentemente,
que dado ε > 0 podemos encontrar N ∈ N tal que para todo x ∈ K se tenga
|fn(x)− f(x)| < ε. Intentemos un argumento análogo a la demostración del
Lema anterior. Por desigualdad triangular y ceros convenientes, se tiene que

|fn(x)− f(x)| = |fn(x)− fn(y) + fn(y)− f(x)|
≤ |fn(x)− fn(y)|+ |fn(y)− f(x)|
≤ |fn(x)− fn(y)|+ |fn(y)− f(y) + f(y)− f(x)|
≤ |fn(x)− fn(y)|+ |fn(y)− f(y)|+ |f(y)− f(x)|

para cada n ∈ N y y ∈ K arbitrario. Intentemos estimar esta suma.
Como la sucesión es equicontinua, el Lema 2.3.4 nos permite deducir que

el conjunto E := {f, f1, f2, . . .} es equicontinuo, y por tanto dado ε > 0,
podemos encontrar δ > 0 tal que el primer y último sumando sean < ε
cuando |x− y| < δ.

El problema es que la convergencia puntual no basta para acotar el su-
mando de en medio uniformemente, pues la velocidad de convergencia de-
penderá del punto en cuestión. Acá es que la compacidad entra en juego.

Consideremos el δ > 0 definido anteriormente por la equicontinuidad.
Por la compacidad, podemos cubrir K con finitas bolas abiertas de radio δ,
digamos

B(y1, δ), . . . , B(yk, δ),

para yj ∈ K y algún k ∈ N.
Ahora, la convergencia puntual nos dice que para cada j = 1, . . . , k,

podemos encontrar N(ε, yj) ∈ N tal que |fn(yj)− f(yj)| < ε cuando n >
N(ε, yj). Aśı, podemos escoger

N(ε) := máx
j=1,...,k

{N(ε, yj)},

y se tendrá que el sumando de en medio efectivamente es < ε cuando
n > N(ε). Este N(ε) solo depende de K y ε, pero no de x, por lo que
la convergencia es en efecto uniforme.

En particular, tenemos que |fn(x)− f(x)| < 3ε cuando n > N(ε). Como
ε era arbitrario, concluimos lo afirmado.

Teorema 2.3.6 (Arzelà–Ascoli). Un conjunto E ⊆ C([a, b]) es compacto si
y solo si es cerrado, acotado, y equicontinuo.

Demostración. Probemos ambas implicancias.

=⇒ : Ya sabemos que si E es compacto, entonces debe ser cerrado y acotado,
por lo que resta probar que es equicontinuo. Supongamos que no lo
fuese. Aśı, podemos encontrar ε > 0 de modo que para todo δ > 0,
se tenga que hay x, y ∈ [a, b] y f ∈ E tales que |x− y| < δ, pero
|f(x)− f(y)| ≥ ε.
En particular, para cada δn := 1

n
, habrá fn ∈ E y xn, yn ∈ [a, b] ta-

les que |xn − yn| < δ, pero |fn(xn)− fn(yn)| ≥ ε. Consideremos la
sucesión (fn)n∈N. Por la compacidad de E, esta sucesión admite una
subsucesión convergente, y por tanto equicontinua. Pero por construc-
ción, (fn)n∈N no es equicontinua y por tanto no tiene subsucesiones
equicontinuas, lo que es contradictorio. Por tanto, debe ser que E śı es
equicontintinuo.
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⇐= : Probemos compacidad secuencial. Sea (fn)n∈N una sucesión en E. El
plan es el siguiente: construir usando fuerza bruta una subsucesión
convergente, primero utilizando el hecho de E es cerrado y acotado
para encontrar una que sirva en los puntos racionales de [a, b], y luego
apoyarnos en la equicontinuidad para extender esta convergencia de
modo uniforme sobre todo [a, b].

En efecto, sea (xn)n∈N una numeración de los racionales de [a, b]. No-
tamos que para cada i ∈ N, cada sucesión de evaluaciones (fn(xi))n∈N
es acotada y posee una subsucesión convergente por estar en E. Su-
pongamos que la respectiva subsucesión de cada (fn(xi))n∈N converge
a ai. Ahora, utilizaremos un argumento diagonal. Sea N1 ⊆ N el con-
junto que indexa la subsucesión (fn(x1))n∈N que converge a a1. Ahora,
podemos considerar la sucesión (fn(x2))n∈N1 , que aún posee una sub-
sucesión convergente a a2, supongamos indexada por N2 ⊆ N1.

Siguiendo de esta manera para cada i ∈ N, habremos encontrado
una familia numerable de ı́ndices N ⊃ N1 ⊃ N2 ⊃ . . ., y un punto
a := (a1, a2, . . .). Por el Axioma de Elección, existe un N∗ ⊆ N de mo-
do que su j-ésimo elemento sea el j-ésimo elemento de Nj (todos los
conjuntos ordenados de forma creciente). Se sigue que cada miembro
de (fn(xi))n∈N∗ converge puntualmente a ai, por lo que la sucesión
(fn)n∈N converge puntualmente a una f ∈ E sobre racionales.

Ahora, notemos que si probamos que esta convergencia es uniforme en
[a, b], terminamos. Esto es inmediato del Lema 2.3.5, que nos inidca
que la convergencia es uniforme en compactos de [a, b], en particular
sobre el mismo [a, b].

2.4. Problema de momentos y el teorema de Helly
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3.2. El teorema de Montel
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Caṕıtulo 4

Espacios de Banach

4.1. Transformaciones lineales continuas

Dado un R-espacio normado, en nuestro curso de Álgebra Lineal estu-
diamos su estructura de R-espacio vectorial. Ahora, también conocemos que
gracias a su norma, porta una estructura topológica. Por tanto, es natural
indagar cómo interactúan estas estructuras.

Una de estas interacciones ocurre al nivel de morfismos. En el caso de
los espacios vectoriales, estos corresponden a las transformaciones lineales,
mientras que para espacios topológicos son las funciones continuas. Aśı, po-
demos estudiar las transformaciones lineales continuas entre dos espacios
normados.

Resulta ser que las tranformaciones lineales continuas son precisamen-
te las acotadas. Dados dos R-espacios normados V,W , podemos definir, en
primera instancia, una transformación R-lineal T : V →W como acotada si

‖Tv‖ <∞

para cada v ∈ V . Resulta ser conveniente considerar una noción algo más
fuerte, pues en tal caso conseguiremos una norma que hace del espacio de
las transformaciones lineales continuas de un espacio de Banch:

Teorema 4.1.1. Dados V,W dos R-espacios de Banach, la función

‖T‖op := sup
‖x‖V ≤1

{
‖Tx‖W

}
es una norma en el R-espacio vectorial

B(V,W ) :=
{
T ∈ L(V,W ) : ‖T‖op <∞

}
,

que resulta ser completo respecto a tal norma.

Demostración. Omitimeros la demostración de que B(V,W ) es un R-espacio
vectorial, y de la norma solo probaremos la desigualdad triangular—el resto
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queda propuesto. Directamente,

‖T + S‖op = sup
‖x‖V ≤1

{
‖(T + S)x‖W

}
≤ sup
‖x‖V ≤1

{
‖Tx‖W + ‖Sx‖W

}
≤ sup
‖x‖V ≤1

{
‖Tx‖W

}
+ sup
‖x‖V ≤1

{
‖Sx‖W

}
= ‖T‖op + ‖S‖op .

Para probar la completitud, consideremos (Tn)n∈N una sucesión Cauchy
en B(V,W ), y notemos que para cada f ∈ V fijo, se tiene que

‖Tif − Tjf‖W ≤ ‖Ti − Tj‖op ‖f‖V .

Gracias a la condición de Cauchy de le hipótesis, esto indica que (Tnf)n∈N es
Cauchy en W , que al ser Banach hace de dicha sucesión convergente, digamos
a Tf . Esto define únicamente una función T : V → W , que se verifica como
lineal directamente. Para probar que es acotada, notamos que

‖Tf‖W ≤ sup
{
‖Tkf‖W

}
n∈N

≤ ‖f‖V sup
{
‖Tk‖op

}
n∈N

<∞,

donde el último supremo es acotado debido a que cualquier sucesión Cauchy
es acotada. Finalmente, falta probar que efectivamente Tk → T . Para ello,
notamos que

‖Tkf − Tf‖W = ĺım
n→∞

‖Tkf − Tnf‖W
≤ ĺım
n→∞

‖Tk − Tn‖op ‖f‖V
≤ ε ‖f‖V ,

donde la última desigualdad es cierta para n, k suficientemente grandes, da-
dos por la condición de Cauchy original. Tomando sup‖f‖V ≤1, concluimos la

convergencia deseada.

La norma ‖·‖op se llama norma operador, y por eso usamos el sub́ındice
para distinguirlo de las otras dos normas. Si bien pueden haber tres normas
distintas usándose al mismo tiempo, es habitual omitir los sub́ındices por
simplicidad notacional. Nosotros acogemos esa costumbre desde ahora, a
menos que sea necesario.

Con esta noción, tiene sentido hablar de una transformación acotada
como aquella que es acotada respecto a su norma operador. Aśı, podemos
probar el resultado afirmado inicialmente:

Proposición 4.1.2. Sean V,W dos R-espacios de Banach. Una transfor-
mación lineal T : V →W es continua si y solo si es acotada.

Demostración. Usaremos la caracterización de continuidad via sucesiones.



4.1. Transformaciones lineales continuas

=⇒ : Probemos la afirmación contrarećıproca. Supongamos T no acotada,
caso en el que dada una sucesión (fn)n∈N en V de norma ≤ 1, se
tendrá ‖Tfn‖ → ∞. Aśı, se tiene

fn
‖Tfn‖

→ 0 y T

(
fn
‖Tfn‖

)
=

Tfn
‖Tfn‖

6→ 0,

es decir, T no es continua.

⇐= : Supongamos que T es acotado. Sea (fn)n∈N una suecesión convergente
en V , digamos a f , y probemos que Tfn → Tf . Directamente,

‖Tfn − Tf‖ = ‖T (fn − f)‖
≤ ‖T‖ ‖fn − f‖ → 0,

lo que verifica lo afirmado.
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